

 PROFIBUS
and

PROFINET

Guideline

Communication Function Blocks on
PROFIBUS DP and PROFINET IO

Version 2.0
November 2005

Order No: 2.182

Document Identification: TC2-05-0001a
File name: Comm-Func-Block_2182_V20_Nov05

Prepared by the PROFIBUS Working Group 4 “Communication Function Blocks“
in the Technical Committee 2 “Communication Profiles“.

The attention of adopters is directed to the possibility that compliance with or adoption of PI (PROFIBUS International)
specifications may require use of an invention covered by patent rights. PI shall not be responsible for identifying
patents for which a license may be required by any PI specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. PI specifications are prospective and advisory
only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

NOTICE:

The information contained in this document is subject to change without notice. The material in this document details a
PI specification in accordance with the license and notices set forth on this page. This document does not
represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, PI MAKES NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT
NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR PURPOSE OR USE.

In no event shall PI be liable for errors contained herein or for indirect, incidental, special, consequential,
reliance or cover damages, including loss of profits, revenue, data or use, incurred by any user or any third
party. Compliance with this specification does not absolve manufacturers of PROFIBUS or PROFINET
equipment, from the requirements of safety and regulatory agencies (TÜV, BIA, UL, CSA, FCC, IEC, etc.).

PROFIBUS® and PROFINET® logos are registered trade marks. The use is
restricted for members of Profibus International. More detailed terms for the
use can be found on the web page www.profibus.com/libraries.html. Please
select button "Presentations & logos".

In this specification the following key words (in bold text) will be used:
may: indicates flexibility of choice with no implied preference.
should: indicates flexibility of choice with a strongly preferred implementation.
shall: indicates a mandatory requirement. Designers shall implement such

mandatory requirements to ensure interoperability and to claimconformance
with this specification.

Publisher:
PROFIBUS Nutzerorganisation e.V.
Haid-und-Neu-Str. 7
D-76131 Karlsruhe
Germany
Phone: +49 (0) 721 / 96 58 590
Fax: +49 (0) 721 / 96 58 589
E-mail: pi@profibus.com
Web site: www.profibus.com

© No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

CONTENTS

1 General ... 9
1.1 Scope .. 10
1.2 References .. 10
1.3 Definitions and Abbreviations ... 11
1.4 Compliance .. 15

2 Principles for modelling Communication Function Blocks 16
2.1 Principles of Modelling ... 16
2.2 IEC 61131-3 Function Blocks for Profibus Comm. and as Devices Proxies 16
2.3 Library Concept and Program Porting ... 17
2.4 Mapping to IEC 61158 .. 18
2.5 Mapping to Functions and Function Blocks ... 18
2.6 Parameters .. 19
2.7 Error Concept .. 20
2.8 Address Concept.. 21

2.8.1 General ... 21
2.8.2 DP Address Concept.. 22
2.8.3 Address Conversion ... 24

3 Communication Function Blocks for Host Controller 27
3.1 General Information.. 27
3.2 Cyclic Exchange of IO data object .. 27

3.2.1 General ... 27
3.2.2 Get IO data object (GETIO) .. 29
3.2.3 Set IO data object (SETIO)... 32
3.2.4 Get a Part of IO data object (GETIO_PART) ... 35
3.2.5 Set IO data object Related to a Part of a Slot (SETIO_PART) 38

3.3 Exchange of Process Data Records .. 41
3.3.1 General ... 41
3.3.2 Read Process Data Record (RDREC) ... 41
3.3.3 Write Data Record (WRREC) ... 44

3.4 Alarms and Diagnosis... 47
3.4.1 General ... 47
3.4.2 Receiving Alarms (RALRM) .. 47
3.4.3 Read Diagnosis (RDIAG) ... 53

3.5 Higher Communication Functions ... 55
3.5.1 Interlocked Control (ICTRL) ... 55

4 Communication Function Blocks for Supervisor .. 61
4.1 General.. 61
4.2 Reading IO data object ... 61

4.2.1 Read Input Data (RDIN) ... 61
4.2.2 Read Output Data (RDOUT) ... 64

4.3 Exchange of Process Data Records .. 67
4.4 Diagnosis... 67

4.4.1 Read Diagnosis (RDIAG) ... 67

© Copyright PNO 2005 - All Rights Reserved Page 3 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

4.5 Connection Management (CNCT) ... 68
5 Communication Function Blocks for Field Devices .. 73

5.1 Model of a PLC as a Field Device ... 73
5.2 IO Data Object Interface ... 74

5.2.1 General ... 74
5.2.2 Receive Cyclic Output Data (RCVCO) .. 75
5.2.3 Subscribe Cyclic Input Data (SBCCI) .. 77
5.2.4 Provide Cyclic Input Data (PRVCI) ... 79

5.3 Process Data Record Interface ... 81
5.3.1 General ... 81
5.3.2 Receive Process Data Record (RCVREC) .. 81
5.3.3 Provide Process Data Record (PRVREC) ... 86

5.4 Alarm Handling and Diagnosis .. 91
5.4.1 Send Alarm (SALRM) ... 91
5.4.2 Generate Diagnosis Information (SDIAG) ... 94

6 PLC in Multiple Communication Roles .. 97
7 Guidelines for application of Communication Function Blocks........................ 98

7.1 Communication Function Blocks and Proxy Function Blocks 98
7.2 Communication Function Blocks and PROFINET CBA..................................... 98
7.3 Mapping Technological Functionality to Proxy FB.. 98
7.4 Using Device IO ... 99

7.4.1 Integrated and External Device IO .. 99
7.4.2 Proxy FB for a Device with Local IO ... 100
7.4.3 Proxy FB for a Field Device with IO via the Process Image 102
7.4.4 Some Recommendations.. 103

7.5 Scheduling of Function Blocks ...104
Annex A - Compliance Table ..106

© Copyright PNO 2005 - All Rights Reserved Page 4 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

List of tables

Table 1 – Communication FB Parameters ..19
Table 2 – Structure of the Output STATUS...20
Table 3 – Error_Decode values...20
Table 4 – Error_Code_1 values ..20
Table 5 – Structure of the Output of ADDR...24
Table 6 – Structure of the ADDR data structure of PROFIBUS DP..25
Table 7 – Structure of the ADDR data structure of PROFINET IO ...25
Table 8 - Transitions and actions for GETIO state diagram..31
Table 9 - Transitions and actions for SETIO state diagram ..34
Table 10 - Transitions and actions for GETIO_PART state diagram ..37
Table 11 - Transitions of the SETIO_PART state diagram ...40
Table 12 - Transitions and actions for RDREC state diagram ..43
Table 13 - Transitions of the WRREC state diagram ..46
Table 14 - Structure of the variable at AINFO parameter for PROFIBUS DP...48
Table 15 - Structure of the variable at AINFO parameter for PROFINET IO ..48
Table 16 - Transitions and actions for RALRM state diagram ..51
Table 17 - Transitions and actions for RDIAG state diagram..54
Table 18 – States of interlocked control execution ...56
Table 19 - Transitions and actions for ICTRL state diagram...58
Table 20 - Transitions and actions for RDIN state diagram ..63
Table 21 - Transitions and actions for RDOUT state diagram ..66
Table 22 - Transitions and actions for RDIAG state diagram..67
Table 23 - Structure of the variable at D_ADDR input for PROFIBUS DP ...69
Table 24 - Structure of the variable at D_ADDR input for PROFINET IO...69
Table 25 - Transitions and actions for CNCT state diagram...71
Table 26 – Transitions and actions for RCVCO state diagram ...76
Table 27 - Transitions and actions for SBCCI state diagram..78
Table 28 - Transitions and actions for PRVCI state diagram..80
Table 29 - Transitions and actions for RCVREC state diagram..84
Table 30 - Transitions and actions for PRVREC state diagram..89
Table 31 - Transitions and actions for SALRM state diagram...93
Table 32 - Transitions and actions for SDIAG state diagram..95

© Copyright PNO 2005 - All Rights Reserved Page 5 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Table of figures

Figure 1 – Application of the Communication Function Blocks ...10
Figure 2 – Proxy FB and Communication Function Blocks...17
Figure 3 – Usage of function block libraries with Communication Function Blocks and Proxy FB18
Figure 4 – Function ID ...23
Figure 5 – Function ADDR ..23
Figure 6 – SLOT ..24
Figure 7 – Function Block ADDR_TO_ID..25
Figure 8 – Function Block ID_TO_ADDR..26
Figure 9 – System with a PLC as Host Controller ...27
Figure 10 – Communication Function Blocks for cyclic exchange of data..27
Figure 11 – Communication path for cyclic IO data object..28
Figure 12 – GETIO function block ...30
Figure 13 – State diagram of GETIO function block ...31
Figure 14 – SETIO function block ...33
Figure 15 – State diagram of SETIO function block..34
Figure 16 – GETIO_PART function block ...36
Figure 17 – State diagram of GETIO_PART function block..37
Figure 18 – SETIO_PART function block..39
Figure 19 – State diagram of SETIO_PART function block ..40
Figure 20 – Communication Function Blocks for acyclic exchange of data records...................................41
Figure 21 – RDREC function block ...42
Figure 22 – State diagram of RDREC function block..43
Figure 23 – WRREC function block...45
Figure 24 – State diagram of WRREC function block ...46
Figure 25 – RALRM function block..50
Figure 26 – State diagram of RALRM function block ..51
Figure 27 – RDIAG function block...53
Figure 28 – State diagram of RDIAG function block ...54
Figure 29 – Interlocked Control Timeline ..55
Figure 30 – ICTRL function block..57
Figure 31 – State diagram of ICTRL function block ..58
Figure 32 – Profibus system with a PLC as Supervisor ..61
Figure 33 – RDIN function block ...62
Figure 34 – State diagram of RDIN function block..63
Figure 35 – RDOUT function block ...65
Figure 36 – State diagram of RDOUT function block..66
Figure 37 – CNCT function block ..70
Figure 38 – State diagram of CNCT function block...71
Figure 39 – Profibus system with a PLC as Field Device ...73
Figure 40 – PLC as a Field Device Using IO data object..74
Figure 41 – RCVCO function block ...75
Figure 42 – State diagram of RCVCO function block..76
Figure 43 – SBCCI function block ...77
Figure 44 – State diagram of SBCCI function block..78
Figure 45 – PRVCI function block ...79
Figure 46 – State diagram of PRVCI function block..80
Figure 47 – RCVREC function block ...83
Figure 48 – State diagram of RCVREC function block ...84
Figure 49 – PRVREC function block ...88
Figure 50 – State diagram of PRVREC function block..89
Figure 51 – SALRM function block..92
Figure 52 – State diagram of SALRM function block ..93
Figure 53 – SDIAG function block ...95
Figure 54 – State diagram of SDIAG function block ...95
Figure 55 – PLC in multiple communication roles...97
Figure 56 – Usage of Communication FB and Proxy FB in the PLC program (Host Controller)98
Figure 57 – Concepts of FB application ..99
Figure 58 – Field Device with local IO...100
Figure 59 – Field Device with external IO ...100

© Copyright PNO 2005 - All Rights Reserved Page 6 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Figure 60 – Proxy FB MINI_PID with local IO ...100
Figure 61 – Proxy FB MINI_PID_2 with IO via the process image ...102
Figure 62 – Scheduling of a function block ..104
Figure 63 – Multiple scheduling of a FB instance by invokations in different programs105
Figure 64 – Multiple scheduling of a FB instance by different invokations in the same programs105

© Copyright PNO 2005 - All Rights Reserved Page 7 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Foreword

For PROFIBUS DP and PROFINET IO sets of communication services are defined in IEC 61158.
The representation of these services in the application program is dependent of the various
controllers and devices provided by different manufactures.

State of the art for the programming model and programming languages in the area of the
programmable controllers (PLC) is the international standard IEC 61131-3. This standard defines
a set of language elements and mechanisms (e.g. data types, function blocks) which are
commonly applied in a well defined set of programming languages (e.g. Ladder Diagram,
Structured Text).

This specification defines a common set of Communication Function Blocks applicable in
application programs using the IEC 61131-3 languages. The application of this specification can
provide benefits for the following three groups:

End users
want to implement applications (including application software and devices) using predefined so-
lutions and having a wide choice and independent mixture of various PLC and Field Devices on
PROFIBUS DP and PROFINET IO respectively.

PLC manufacturers
want to offer the PLC series with a wide choice of Field Devices from various manufactures.

Field Device manufacturers
wants to have applied his Field Devices easily with a wide choice of minimise the effort to use
these Field Devices with different PLC.

The first published version V 1.20 July 2001 of this specification defined a set of Communication
Function Blocks for PROFIBUS DP. This 2nd version V 2.0 specifies a set of function blocks
which is applicable for PROFIBUS DP and PROFINET IO and which are compatible to the first
version to a large extent.

Following relevant changes are made in the version 2.0.

Clause Feature Reason

all scope extended for PROFINET IO relevance of PROFINET IO

all naming conventions made more general to conform to the extended
scope of PROFIBUS DP and PROFINET IO

1.3 definitions for PROFINET IO added extended scope of PROFINET IO

2.6 EN input and ENO output are optional
and may be omitted from the textual
Function Block declarations

EN and ENO are used according to IEC 61131-
3, chapter 2.5.1.2

2.8.2 FC NSLOT deleted because of irrelevance

2.8.3 unified address concept for PROFIBUS
DP and PROFINET IO

extended scope of PROFINET IO

3 .. 5 UML compatible presentation of the
state diagrams

IEC compatibility

3 FB SYCFR deleted because of irrelevance

3.2 FB GETIO_PART and SETIO_PART
added

requirement to access parts of the IO data of a
module

3.4.2 Structure of the variable at AINFO
parameter for PROFINET IO

FB RALRM extended for PROFINET IO

© Copyright PNO 2005 - All Rights Reserved Page 8 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Clause Feature Reason

3.5 representation of state diagrams in UML conforming to PNO regulations

3.5 mapping to PROFINET IO services
added

extended scope of PROFINET IO

4.5 Structure of the variable at D_ADDR
input for PROFINET IO

FB CNCT extended for PROFINET IO

5.3 FB RCVREC and PRVREC: F_ID
parameter extended to DWORD to hold
slot and subslot

different address concept of PROFINET IO

5.3 FB RCVREC and PRVREC: New output
parameter SUBSLOT

different address concept of PROFINET IO

6 PLC in multiple communication roles using all Communication Function Blocks in one
application program

7.2 Communication Function Blocks and
PROFINET CBA

explanation

A.1 Compliance table extended for
PROFINET IO

extended scope of PROFINET IO

B Application example „DPV1 – Parameter
Channel“

deleted

The following figure gives an overview of the PNO profiles and the placement of
this guideline in the context of the other PNO specifications.

S
y s

te
m

Pr
of

ile
s

1…
x

Communication
Technologies

PA
D
ev

ic
es

PA
D
ev

ic
es

Application
Profiles II

PR
O
FI

dr
iv
e

V2
.0

an
d

V3
.0

PR
O
FI

dr
iv
e

.

Id
e n

t
Id

e n
t

SE
M

I
S
EM

I

En
c o

de
r

En
co

de
r

RI
O

f o
r

PA
RI

O
f o

r
PA

•
D

es
cr

ip
ti

on
s

(G
SD

, E
D

D)
•

To
ol

s
(D

TM
,

Co
nf

ig
u r

a t
or

s
)

•
D

es
cr

i p
ti

on
s

(G
SD

,E
D

D
)

•
To

ol
s

(D
TM

,
Co

nf
ig

u r
at

or
s

)
I n

te
gr

at
io

n
Te

ch
no

lo
g i

e s

Common Application Profiles (optional):
PROFIsafe

Common Application Profiles (optional):
PROFIsafe, Time Stamp, Redundancy, etc.

Application
Profiles I

PROFIBUS DPPROFIBUS DP / PROFINET

RS 485 NRZ
RS 485 -IS Intrinsic Safety

RS 485 NRZ
RS 485 -IS Intrinsic Safety

MBP *): Manchester Bus Powered
MBP -LP: Low Power
MBP -IS: Intrinsic Safety

MBP *): Manchester Bus Powered
MBP -LP: Low Power
MBP -IS: Intrinsic Safety

Fiber Glass Multi Mode
Optics: Glass Single Mode

PCF / Plastic Fiber

Fiber Glass Multi Mode
Optics: Glass Single Mode

PCF / Plastic Fiber

DP- V0...V2

IEC 61158/61784

•
M

as
te

r
Co

nf
or

m
a n

ce
Cl

as
se

s
•

In
te

rf
ac

es
(C

om
m

-
FB

,F
D

T,
e t

c .
)

•
C o

n s
t r

ai
nt

s

•
M

as
te

r
Co

nf
or

m
a n

ce
Cl

as
se

s
•

In
te

rf
ac

es
(C

o m
m

-
F B

,F
D

T,
e t

c .
)

•
Co

ns
tr

ai
nt

s

W
ei
gh

in
g

&
D
os

ag
e

W
ei
gh

i n
g

&
D
os

ag
e

CommFB,

© Copyright PNO 2005 - All Rights Reserved Page 9 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

1 General

1.1 Scope
This specification defines a set of Communication Function Blocks for communication among
programmable controllers and Field Devices over PROFIBUS DP and PROFINET IO
respectively. These Communication Function Blocks are defined according the international
standard for programming languages of PLC IEC 61131-3.

The Communication Function Blocks shall have universal interfaces for as well as PROFIBUS
DP and PROFINET IO. Therefore if the Communication Function Blocks are used in technology
function blocks. The technology function blocks can be defined with similar interfaces for
different IO systems.

Application program in IEC 61131-3 language

Technology function block

Communication Function
Block

Communication Function
Block

PROFIBUS DP PROFINET IO

Figure 1 – Application of the Communication Function Blocks

This specification gives also some "Guidelines for the application of the Communication Function
Blocks", i.e. for implementing Field Device specific Proxy Function Blocks usable in the PLC.
Also the relationship to PROFINET CBA is shown in the guideline.

1.2 References
The following normative documents contain provisions which constitute provisions of this specifi-
cations.

IEC 61158-5:2004, Digital data communications for measurement and control - Fieldbus for use
in industrial control systems – Part 5: Application layer service definition.

IEC 61158-6:2004, Digital data communications for measurement and control - Fieldbus for use
in industrial control systems – Part 6: Application layer protocol specification.

© Copyright PNO 2005 - All Rights Reserved Page 10 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

PROFINET IO, Application Layer Service Definition, Application Layer Protocol, Version 2.0,
April 2005.

NOTE PROFIBUS DP is already part of IEC 61158, PROFINET IO will be part of IEC 61158 as Type 10.
PROFINET IO is already published IEC PAS 62411, 2005-06.

IEC 61131-3: 2nd Edition 2003-01, Programmable Controllers, Part 3: Programming languages.

1.3 Definitions and Abbreviations
For the purpose of this specification the following definitions apply. For definitions adopted from
other standards the source reference is given.

1.3.1

application program
self-contained sequence of computer instructions to solve a task
NOTE In this specification is a application program a set of function blocks and functions written in a
IEC 61131-3 language.

1.3.2

array
aggregate that consists of data objects, with identical attributes, each of which may be uniquely
referenced by subscripting
[IEC 61131-3]

1.3.3

cyclic (exchange of data)
term used to describe events which repeat in a regular and repetitive manner
[IEC 61158-6]

1.3.4

Communication Function Block
basic function block defined in this specification and supplied by the PLC manufacturer for the
access to Field Devices

1.3.5

data type
set of values together with a set of permitted operation
[IEC 61131-3]

1.3.6

declaration
mechanism for establishing the definition of a language element.
NOTE A declaration normally involves attaching an identifier to the language element, and allocating attri-
butes such as data types and algorithms to it.

[IEC 61131-3]

1.3.7

DP-master (Class 1)
controlling device which controls several DP-slaves (Field Devices); usually a programmable
controller or distributed control system
 [IEC 61158-6]

© Copyright PNO 2005 - All Rights Reserved Page 11 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

1.3.8

DP-master (Class 2)
controlling device which manages configuration data (parameter sets) and diagnosis data of a
DP-master (Class 1); additionally the DP-master (Class 2) can perform all communication
capabilities of a DP-master (Class 1)
[IEC 61158-6]

1.3.9

DP-slave
Field Device that is assigned to one DP-master (Class 1) as a provider for cyclic IO data object
exchange, in addition acyclic functions and alarms could be provided
[IEC 61158-6]

1.3.10

Field Device
device acting as a PROFIBUS DP-slave or PROFINET IO Device respectively

1.3.11

function block (FB)
programmable controller programming language element consisting of: (i) the definition of a data
structure partitioned into input, output, and internal variables; and (ii) a set of operations to be
performed upon the elements of the data structure when an instance of the function block type is
invoked
[IEC 61131-3]

1.3.12

function
program organisation unit which, when executed, yields exactly one data element and possibly
additional output variables (which may be multi-valued, e.g., an array or structure), and whose
invocation can be used in textual languages as an operand in an expression
[IEC 61131-3]

1.3.13

Host Controller
controller acting as a PROFIBUS DP-master (Class 1) or PROFINET IO Controller respectively

1.3.14

Human Machine Interface (HMI)
reading and writing interface for the machine or control equipment operator or shop floor
personell to the process data

1.3.15

identifier
combination of letters, numbers, and underline characters which begins with a letter or underline
and which names a language element
[IEC 61131-3]

1.3.16

instance (of a function block)
individual, named copy of the data structure associated with a function block type or program
type, which persists from one invocation of the associated operations to the next
[IEC 61131-3]

© Copyright PNO 2005 - All Rights Reserved Page 12 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

1.3.17

index
address of an object within an application process
[IEC 61158-6]

1.3.18

IO Controller
controlling device, which acts as client for several IO Devices (Field Devices)
NOTE This is usually a programmable controller or a distributed control system.
[PROFINET IO]

1.3.19

IO data object
object designated to be transferred cyclically for the purpose of processing and referenced by
device/slot/subslot
[PROFINET IO]

1.3.20

IO Device
Field Device which acts as server for IO operation
[PROFINET IO]

1.3.21

IO Supervisor
engineering device which manages commissioning and diagnosis of an IO system
[PROFINET IO]

1.3.22

IO subsystem
subsystem composed of one Host Controller and all its associated Field Devices
[PROFINET IO]

1.3.23

IO system
system consisting of a Host Controller and Field Devices which act as server for IO operation to
the Host Controller
[derived from PROFINET IO]

1.3.24

invocation
process of initiating the execution of the operations specified in a program organization unit like
function block and function
[IEC 61131-3]

1.3.25

language element
item identified by a symbol on the left-hand side of a production rule in the formal specification
[IEC 61131-3]

1.3.26

library (of function blocks)
organised set of function blocks for the use in application programs

© Copyright PNO 2005 - All Rights Reserved Page 13 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

1.3.27

module
addressable unit inside the Field Device
[IEC 61158-6, IEC 61158-4]

1.3.28

parameter (input and output parameter)
variable assuming a constant used as an argument to pass in or out a function block or function
[IEC 61131-3]

1.3.29

process data
data which are already pre-processed and transferred acyclically for the purpose of information
or further processing
[IEC 61158-6]

1.3.30

Proxy function block (Proxy FB)
function block used in the IEC 61131 application program representing a Field Device or a
functional part of a Field Device

1.3.31

slot
address of a module within a Field Device
[IEC 61158-6, IEC 61158-4]

1.3.32

Structured Text (ST)
textual PLC programming language using (i) the same common elements as all IEC 61131-3
languages like data types, function blocks and (ii) the specific operators like +, - and (iii)
language statements like IF, CASE, WHILE, which are adopted from the well know general
purpose languages BASIC or PASCAL
[IEC 61131-3]

1.3.33

subslot
address of a structural unit within a slot

1.3.34

Supervisor
device or tool acting as a PROFIBUS DP-master (Class2) or PROFINET IO Supervisor
respectively.

1.3.35

task
execution control element providing for periodic or triggered execution of a group of associated
program organisation units like function block or funktions
[IEC 61131-3]

© Copyright PNO 2005 - All Rights Reserved Page 14 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

1.3.36

type (of a function block)
PLC languages element consisting of: (i) the definition of a data structure partitioned into input,
output, and internal variables; and (ii) a set of operations to be performed upon the elements of
the data structure when in instance of the function block type is invoked
[IEC 61131-3]

1.4 Compliance
This subclause defines the requirements which shall be met by programmable controller systems
and Field Devices which claim compliance with this PNO specification.

The definition of the function blocks in this specification is based on the elements and rules of
the "common elements" of IEC 61131-3 (2nd edition). Therefore it is required that a programming
system which uses the here defined function blocks is compliant to the IEC standard.

This specifications defines a set of Communication Function Blocks which have defined names,
interfaces and functionality. The function block interface comprises the names, the data type and
the order of the input and output parameters. The functionality is defined by the state diagram
and the associated transition and action table.

A system which claims compliance with this PNO specification shall provide a subset of the here
defined of Communication Function Blocks. All provided function blocks shall have the full set of
parameters and functionality. The compliant function blocks shall be listed in the "Compliance
Table" according Annex A.

In a second table also shown in Annex A the permitted "Implementation dependant features"
shall be listed.

© Copyright PNO 2005 - All Rights Reserved Page 15 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

2 Principles for modelling Communication Function Blocks

2.1 Principles of Modelling
The following principles of modelling for the Communication Function Blocks have to be met:

• to fit into the existing PLC systems, e.g. using the existent addressing concept
• to be efficient and without overhead; that means the model shall be performance oriented
• to enable a easy application program porting between different PLC systems
• universal interface for the use with different types of IO communication subsystems

especially to support the use of PROFIBUS DP and PROFINET IO

• to use directly the existing PROFIBUS DP or PROFINET IO functions, i.e. if possible one
Communication Function Block shall cover one service.

• to apply good programming style is to avoid dependencies of the hardware configuration
data such as addressing in the application program.

2.2 IEC 61131-3 Function Blocks for Profibus Communication and as
Devices Proxies

There are various possibilities in a program of a PLC acting as a Host Controller (DP Master
Class 1 and IO Controller respectively) to access to the data in remote modules and Field De-
vices (DP-slave and IO Device respectively):

• A typical solution in the PLC is the "cyclic access" via the so-called process image to the re-
mote inputs and outputs. In the application program these remote variables are used like lo-
cal I/O variables. The data exchange over the fieldbus happens cyclically. The variables are
transferred independently of the execution of the application program and mapped in the
process image.

• In this specification a set of Communication Function Blocks is defined like read and write
record to achieve a data transfer which is triggered by the application program in the PLC.

The Figure 2 shows an instance of the so called Proxy Function Block representing the Field De-
vice in the IEC 61131-3 application program in the PLC. This device specific Proxy function block
exhibits the input and output parameters of the represented Field Device. Inside the Proxy FB
standardised Communication Function Blocks provide the reading and writing access to the Field
Device data using the standard Profibus protocols.

© Copyright PNO 2005 - All Rights Reserved Page 16 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

IO Subsystem:
PROFIBUS DP or PROFINET IO

Host controller (PLC):
IEC 61131-3 program

FB_Field_Device _Control

WRREC

RDREC

Comm. FB

Field Device:
IEC 61131-3 program

RCVREC

Technology FB
Proxy FB

Comm. FB

Figure 2 – Proxy FB and Communication Function Blocks

2.3 Library Concept and Program Porting
Figure 3 illustrates the usage of libraries of two PLC systems with standardised Communication
Function Blocks.

The manufacturers of the PLC systems A and B provide their programming systems according
IEC 61131-3 and offer both their own library with the Communication Function Blocks as defined
in this PNO specification. These Communication Function Blocks have the identical interface and
functionality but are specifically implemented for the different PLC systems and IO subsystems.

The Communication Function Blocks can be used by the application programmers and also by
the Field Device manufacturers to build the specific Proxy FB.
PLC manufacturers may provide libraries of standardised Proxy FB based on fieldbus profiles
and the Communication Function Blocks to support application development integrating Field
Device functionality and support access to Field Device maintenance and diagnose features.

As shown in figure 2 two different Field Device manufacturers C and D can provide their own li-
braries with specific Proxy function block C and D for the application support of their Field De-
vices connected via Profibus to the PLC systems A and B. The device manufacturers use the
standardised Communication Function Blocks for the implementation of their Proxy FB executa-

© Copyright PNO 2005 - All Rights Reserved Page 17 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

ble in different PLC systems. They can apply the same Proxy FB implementation using the stan-
dard Communication Function Blocks of the required PLC library.

The application programmers of the PLC systems A and B can use the specific Proxy FB C and
D as well as the basic Communication Function Blocks.

The application programs using same the IEC 61131 programming language and the standard-
ised Communication Function Blocks and Proxy FB can easily ported from PLC system A to B.

PLC System A PLC System B

Library:

CommFB

A

C

Field device
manufacturer C

uses Comm FB and
provides Proxy FB

Application program:

D

Proxy FB

C

Library:

Comm FB

B

 Proxy FB

C

C

Comm FB

B

Application program:

Proxy FB

D

Field device
manufacturer D

uses Comm FB and
provides Proxy FB

Comm FB

A
Portation

Proxy FB

Figure 3 – Usage of function block libraries with Communication Function Blocks and
Proxy FB

The guidelines in clause 4 offer additional information to implement and apply of the Communi-
cation Function Blocks and Proxy FB.

2.4 Mapping to IEC 61158
The Communication Function Blocks map onto objects and services defined in IEC 61158-6 Type
3 (Profibus DP) and IEC 61158-4 Type 10 (PROFINET IO) respectively.

2.5 Mapping to Functions and Function Blocks
The communication between the application program written in an IEC 61131-3 language and the
Field Devices connected via an IO subsystem to the PLC is modelled by Communication Func-
tion Blocks. This specification defines the Communication Function Blocks for the cyclic and
acyclic data access.

The representation of the interface of the function and function block types is given in graphical
and textual form according IEC 61131-3.

The EN input and ENO output are given in the graphical representation of the declarations of the
cyclic function blocks. These parameters are optional and may be omitted when calling the func-
tion block instance according to IEC 61131-3, chapter 2.5.1.2.

The behaviour of the function blocks is presented as a graphical state diagram with a table for
the transitions and the actions.

© Copyright PNO 2005 - All Rights Reserved Page 18 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

2.6 Parameters
Parameters of different Communication Function Blocks with the same or a similar meaning shall
have the same name and data type according Table 1:

Table 1 – Communication FB Parameters

Parameter Data Type Meaning

EN BOOL Enable

ENO BOOL Enable output

REQ BOOL Request function

ID DWORD Identification of a Field Device or a slot / subslot of it

INDEX INT Identifier of a process data object

OFFSET INT Count of the first byte within IO Data object

LEN INT Actual data length of a process data record

DONE BOOL Flag that the function has finished successfully

VALID BOOL Flag that the function has finished successfully and the
received output data are valid

BUSY BOOL Flag that the function is still performing its task, its not
ready to perform a new task

ERROR BOOL Flag that the function has finished with an error

STATUS DWORD Completion or error code

The Functions and Function Blocks may use the EN input and ENO output according to IEC
61131-3, chapter 2.5.1.2.

The IO data object, the process data records or the alarm and diagnosis information is passed
by input-output parameters to the Communication Function Blocks. Typically these data can be
described as an array of byte. The length of the byte arrays may vary from instance to instance
of one Communication Function Block. It shall also be possible to use a structured data type if
the used data is structured.

The INDEX input addresses a process data record, the LEN parameter contains the length of a
process data record.

NOTE The data type INT is used for both the INDEX and LEN parameter though the value range of the
parameters in the IO subsystems may cover 0..65535. The data type INT is supported by all PLC im-
plementations, the better fitting UINT is not always supported. The value range of 0..32767 is sufficient
for nearly all applications. The data type INT was already used by version 1.20 of this PNO guideline,
and it is kept for compatibility reason. Nevertheless an INDEX > 32767 may be given on the interface
using a negative number or a hexadecimal constant.

The ANY data type is used to allow the use of byte arrays of different lengths, the use of
structured data types as buffers for IO data object, the process data records or the alarm and
diagnosis information, or different address data structures. The user shall use variables of
appropriate size which can contain the information wished. The implementer may cause an error
if he can detect that a given variable does not fit to the requested service.

The DONE and the ERROR outputs pulses only from one invocation of the instance of the Com-
munication Function Block.

The FB parameters use those data types of IEC 61131-3 which are supported in a wide range of
PLC and is contained in the portability level of PLCopen.

© Copyright PNO 2005 - All Rights Reserved Page 19 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

2.7 Error Concept
Communication Function Blocks indicate if the requested function (block) was performed suc-
cessfully or not. The error indication is typically used for two purposes:
1. To change the reaction to the process i.e. to implement a substitute reaction e.g. to repeat

the request at another time or another place or to abort the process task.
2. To issue an alarm message to an HMI system by the application program or by the PLC

system automatically.

NOTE In case 1 only very few different reactions dependent on the indicated error are typical. De-
tailed error information is hardly used.

If the Communication Function Block maps directly to one service primitive of IEC 61158-6 the
error indications of the used service primitive is used as error indication of the function block too.
The Function_Num byte, Error_Decode byte, Error_Code_1 byte, and Error_Code_2 byte of the
DP service primitives are combined to the STATUS output.

The STATUS output has the data type DWORD which is interpreted as a packed array of four
bytes as described in the following table.

Table 2 – Structure of the Output STATUS

Byte Name Definition Date type
0 Function_Num contains Function_Code / Error_Code,

PDU_Identifier, and Frame_Selector
byte

1 Error_Decode defines the meaning of Error_Code_1 and Er-
ror_Code_2, see Table 3

byte

2 Error_Code_1 see Table 4 byte
3 Error_Code_2 implementer specific byte

NOTE The error code 2 should be used only for the purpose to detail an error defined with error de-
code byte and error code 1 byte e.g. for the use of an protocol analyser or an other diagnosis device.

The Function_Num byte is used as defined in IEC 61158-6 and IEC 61158-4 respectively. The
value 16#40 shall be used, if no protocol element is used.

The Error_Decode byte defines the meaning of Error_Code_1 and Error_Code_2.

Table 3 – Error_Decode values

Error_Decode Source Meaning
16#00 .. 16#7F PLC No error or warning
16#80 DP V1, PNIO Error reported according to IEC 61158
16#81 PNIO Error reported according to IEC 61158
16#82 .. 16#8F PLC 18#8x reports an error according the x-th parameter of

the call of the Communication Function Blocks
16#FE .. 16#FF DP Profile profile-specific error

The Error_Code_1 defines the reason of the reported error, see Table 5.

Table 4 – Error_Code_1 values

Error_Decode Error_Code_1 Source Meaning
16#00 16#00 --- No error and no warning
16#00 .. 16#7F 16#00 .. 16#FF PLC Warning
16#80 16#00 .. 16#9F PLC Implementer specific
16#80 16#A0 PLC Read error
16#80 16#A1 PLC Write error
16#80 16#A2 PLC Module failure
16#80 16#A3 .. 16#A6 PLC Implementer specific
16#80 16#A7 PLC Busy

© Copyright PNO 2005 - All Rights Reserved Page 20 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Error_Decode Error_Code_1 Source Meaning
16#80 16#A8 PLC Version conflict
16#80 16#A9 PLC Feature not supported
16#80 16#AA .. 16#AF PLC DP-master specific
16#80 16#B0 Access Invalid index
16#80 16#B1 Access Write length error
16#80 16#B2 Access Invalid slot
16#80 16#B3 Access Type conflict
16#80 16#B4 Access Invalid area
16#80 16#B5 Access State conflict
16#80 16#B6 Access Access denied
16#80 16#B7 Access Invalid range
16#80 16#B8 Access Invalid parameter
16#80 16#B9 Access Invalid type
16#80 16#BA .. 16#BF Access User specific
16#80 16#C0 Resource Read constrain conflict
16#80 16#C1 Resource Write constrain conflict
16#80 16#C2 Resource Resource busy
16#80 16#C3 Resource Resource unavailable
16#80 16#C4 .. 16#C7 Resource Implementer specific
16#80 16#C8 .. 16#CF Resource User specific
16#80 16#D0 .. 16#FF User specific User specific
16#81 16#00 .. 16#FF PNIO PNIO specific error, see PROFINET IO, Table 221
16#82 16#00 .. 16#FF PLC Error concerning the value the 2nd parameter
: : : :
16#8F 16#00 .. 16#FF PLC Error concerning the value the 15th parameter
16#90 IOxS PLC Transfer of IOxs (only PROFINET IO)
16#FE .. 16#FF 16#00 .. 16#FF Profile Profile-specific errors

General errors coming from the IO subsystems shall use the value 16#80 or 16#81 as the value
of the Error_Decode byte. Errors which can explicitly mapped to one parameter of the function
block code the parameter number in the least significant nibble of the Error_Decode byte, e.g.
16#82xx means that an error was detected for parameter number 2. The parameters are counted
beginning with the input parameters starting with 1 and continuing with the output and in-
put/output parameters as defined in the function block declaration.

NOTE The first parameter of all Communication Function Blocks is of type BOOL and cannot
issue an error.

Quality information provided by the used IO system shall be evaluated and returned as an error
code in the STATUS output if the STATUS output is not set to a value not equal to zero, e.g. a
negative IOPS of PROFINET IO shall result in Error_Decode =16#90 and the value of the IOxS
state in Error_Code_1.

The outputs at function blocks for the cyclic I/O services e.g. GETIO is set or reset at every invo-
cation of the function block instance. In this case an error will appear for a longer time in the
STATUS output if it is not only temporary. Temporary errors may be treated as irrelevant by the
application program.

The outputs at function blocks for a acyclic services e.g. RDREC shows the state of the last re-
quested service. They will stay at the same values until the service is requested with the same
function block instance again.

2.8 Address Concept

2.8.1 General

The address concepts of the different IO Systems may be different. This will result in different
functions or function parameters to identify a Field Device, a slot or subslot inside a Field
Device.

© Copyright PNO 2005 - All Rights Reserved Page 21 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

All Communication Function Blocks hide the address concept of the different IO Systems, i.e. the
address of one identified functionality can be used with all Communication Function Blocks. The
application program shall be able to use the Communication Function Blocks without knowledge
of the explicit hardware configuration e.g. the MAC address of a Field Device or the position of a
slot or subslot in a modular Field Device. It shall be able to use symbolic addressing.

2.8.2 DP Address Concept

Addresses shall allow to identify technological functions which communicate with the PLC and its
application program via Profibus DP. Typically these technological functions are represented by
one slot of a DP-slave, a continuous series of slots or a whole DP-slave. Additionally the config-
ured allocation of technological functions to slots of a DP-slave e.g. in the PA profile shall be
supported.

The address concept considers existing DP addressing and existing address concepts of PLC. A
PLC may communicate to DP-slaves which are connected to different DP systems, i.e. the PLC
is DP-master (Class 1) to different DP systems. A DP-slave is addressed using a station number
unique within the DP system. To address a slot of a DP-slave an additional slot number is used.
All numbers have ranges that do not exceed 0 .. 255, i.e. one DWORD can hold this information.

If a PLC is acting as a DP-master (Class 2) it can address different DP systems using a segment
number. As a DP-master (Class 1) the segment number is not relevant and set to zero.

The input parameter ID of the Communication Function Blocks addresses one slot of a DP-slave
or a DP-slave. The ID contains a handle of data type DWORD, the value of it is implementer-
specific.

The handle may be generated by local means of the PLC or its configuration system or may be
generated by using one of the following functions:

• ID: Conversion of a physical address of a DP-slave to the handle

• ADDR: Conversion of a handle to the physical address of a DP-slave

• SLOT: Addressing a slot of a DP-slave
Note IEC 61131-3 distinguishes between function block and function. The function does not have the in-
stance construct like the function block but it can be used as a simple means to provide a value.

2.8.2.1 Function ID

The function ID converts the physical identification of a slot to a handle which can be used with
the Communication Function Blocks. The slot has a unique slot number within a DP-slave, the
DP-slave has a unique station number in a DP system, and a DP system is identified by an iden-
tification of its master interface. The identification of its master interface may be PLC-specific or
unique in the automated system. A DP-master (Class 2) can use a DP segment number addi-
tionally.

© Copyright PNO 2005 - All Rights Reserved Page 22 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

 ID

BOOL --- EN ENO --- BOOL
BYTE --- MASTER --- DWORD
BYTE --- SEGMENT
BYTE --- STATION
BYTE --- SLOT

Note: According IEC 61131-3 2nd Edition the main function output does not have a formal name in
the graphical representation.

 FUNCTION ID : DWORD (* Generate DP slot handle *)

 VAR_INPUT
 EN : BOOL;
 MASTER : BYTE; (* ID of the DP system *)
 SEGMENT : BYTE; (* Number of the DP segment *)
 STATION : BYTE; (* Number of the DP-slave (station address) *)
 SLOT : BYTE; (* Number of the slot *)
 END_VAR

 VAR_OUT
 ENO : BOOL;
 END_VAR;

Figure 4 – Function ID

NOTE The EN and ENO parameters are optional and may be omitted when calling the function in textual
languages.

The slot number 0 is used to address the DP-slave interface.

If no slot exists at the given physical address 16#FFFF_FFFF is returned as an error indication.
The output ENO shall be false.

2.8.2.2 Function ADDR

The function ADDR converts a handle which addresses a slot or a DP-slave into its physical ad-
dress.

 ADDR

BOOL --- EN ENO --- BOOL
DWORD --- ID --- DWORD

 FUNCTION ADDR : DWORD (* Convert DP slot handle to physical
 address *)
 VAR_INPUT
 EN : BOOL;
 ID : DWORD; (* Slot or device handle *)
 END_VAR

VAR_OUT
 ENO : BOOL;
 END_VAR;

Figure 5 – Function ADDR

NOTE The EN and ENO parameters are optional and may be omitted when calling the function in textual
languages.

The result of the function ADDR is a DWORD which is interpreted as a packed array of four
bytes as described in the following table.

NOTE: An output of data type DWORD is used because it is not allowed to use a structured variable as a
function result with IEC 61131-3.

© Copyright PNO 2005 - All Rights Reserved Page 23 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Table 5 – Structure of the Output of ADDR

Byte Name Definition Date type
0 master DP master interface identification byte
1 segment segment number byte
2 station station number byte
3 slot slot number byte

If the handle of a DP-slave interface is given, the returned slot number shall be 0.

2.8.2.3 Function SLOT

The function SLOT provides the handle of a slot identified by its number to a given DP-slave.

 SLOT

BOOL --- EN ENO --- BOOL
DWORD --- ID --- DWORD
BYTE --- SLOT

 FUNCTION SLOT : DWORD (* Provides the slot to a given DP-slave
 handle *)
 VAR_INPUT
 EN : BOOL;
 ID : DWORD; (* Handle to a DP-slave or a slot *)
 SLOT : BYTE; (* Slot number *)
 END_VAR

VAR_OUT
 ENO : BOOL;
 END_VAR;

Figure 6 – SLOT

NOTE The EN and ENO parameters are optional and may be omitted when calling the function in textual
languages.

If the handle of a DP-slave is given, the returned handle addresses the slot identified by the
number in the SLOT input of this DP-slave. If the handle at input ID addresses a slot of a DP-
slave the same handle is returned as if the DP-slave is addressed at the input ID. If a slot with
this number does not exist 16#FFFF_FFFF is returned as an error indication. The output ENO
shall be false.

NOTE If an implementer uses the physical address in its handle, these functions may easily be imple-
mented using logic and arithmetic expressions.

2.8.3 Address Conversion

Addresses shall allow to identify technological functions which communicate with the PLC and its
application program. Typically these technological functions are represented by one slot or sub-
slot of a Field Device.

The address conversion considers existing PROFIBUS DP and PROFINET IO addressing and
existing address concepts of PLC. A PLC may communicate to Field Devices which are con-
nected to different IO subsystems.

The input parameter ID of the Communication Function Blocks addresses one slot of a
PROFIBUS DP-slave or a subslot of a PROFINET IO Device. The ID contains a handle of data
type DWORD, the value of it is implementer-specific.

The handle may be generated by local means of the PLC or its configuration system or may be
generated by using one of the following functions:

• ADDR_TO_ID: Conversion of a address of a PROFINET IO Device to the handle

© Copyright PNO 2005 - All Rights Reserved Page 24 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

• ID_TO_ADDR: Conversion of a handle to the address of a PROFINET IO Device

2.8.3.1 Function Block ADDR_TO_ID

The function block ADDR_TO_ID converts the physical identification of a slot of a PROFIBUS
DP-slave or subslot of a PROFINET IO Device to a handle which can be used with the Commu-
nication Function Blocks.

 ADDR_TO_ID

BOOL --- EN ENO --- BOOL
 STATUS --- DWORD

 ID --- DWORD
ANY --- ADDR ----- -----ADDR

 FUNCTION_BLOCK ADDR_TO_ID (* Generate a handle *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Flag *)
 STATUS : DWORD; (* Last detected status *)
 ID : DWORD; (* Handle *)
 END_VAR
 VAR_IN_OUT
 ADDR : ANY; (* Data structure to define the address of *)
 (* a slot of a PROFIBUS DP-slave or *)
 (* a subslot of a PROFINET IO Device *)
 END_VAR

Figure 7 – Function Block ADDR_TO_ID

NOTE The EN and ENO parameters are optional and may be omitted when calling the function in textual
languages.

The physical address is given in a data structure which contains the address components as
shown in the following tables:

Table 6 – Structure of the ADDR data structure of PROFIBUS DP

Name Date type Definition
SYSTEM BYTE Type of the IO Subsystem (1= PROFIBUS DP)
VERSION BYTE Version of the data structure (1= Version 1)
D STRUCT Identification of the Field Device

MASTER BYTE DP master interface identification
SEGMENT BYTE segment number
STATION BYTE station number

 END_STRUCT
SLOT BYTE slot number

Table 7 – Structure of the ADDR data structure of PROFINET IO

Name Date Type Definition
SYSTEM BYTE Type of the IO Subsystem (2= PROFINET IO)
VERSION BYTE Version of the data structure (1= Version 1)
D STRUCT Identification of the Field Device

STATIONNAME STRING Station name
INSTANCE WORD Instance ID
DEVICE WORD Device ID
VENDOR WORD Vendor ID

 END_STRUCT
API DWORD application process identifier
SLOT WORD Slot Number (identification of a slot)
SUBSLOT WORD Subslot Number (identification of a subslot)

© Copyright PNO 2005 - All Rights Reserved Page 25 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

NOTE The string containing the station name shall be of appropiate size.

NOTE The structures of Table 6 and Table 7 are equivalent to the address information in Table 23
and Table 24

For PROFIBUS DP the slot number 0 is used to address the DP-slave interface. For PROFINET
IO the subslot number 0 is used to address a slot of a PROFINET IO Device.

If the IO Device, the slot or subslot does not exist at the given physical address an error is given
at the STATUS output. The output ENO shall be false.

2.8.3.2 Function Block ID_TO_ADDR

The function block ID_TO_ADDR converts a handle which addresses a slot of a PROFIBUS DP-
slave or a subslot of a PROFINET IO Device into its physical address.

 ID_TO_ADDR

BOOL --- EN ENO --- BOOL
DWORD --- ID STATUS --- DWORD

ANY --- ADDR----- -----ADDR

 FUNCTION ID_TO_ADDR (* Convert a handle to physical address *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 ID : DWORD; (* Slot or subslot handle *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Flag *)
 STATUS : DWORD; (* Last detected status *)
 END_VAR

VAR_IN_OUT
 ADDR : ANY; (* Physical address information *)
 END_VAR

Figure 8 – Function Block ID_TO_ADDR

NOTE The EN and ENO parameters are optional and may be omitted when calling the function in textual
languages.

The result of the function block ID_TO_ADDR is a data structure which contains the physical ad-
dress as shown in Table 6 – Structure of the ADDR data structure of PROFIBUS DP and Table 7
– Structure of the ADDR data structure of PROFINET IO.

If the given handle at the ID input is not valid, an error is given at the STATUS output. The out-
put ENO shall be false.

© Copyright PNO 2005 - All Rights Reserved Page 26 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

3 Communication Function Blocks for Host Controller

3.1 General Information
This clause defines the Communication Function Blocks for a PLC acting as a Host Controller
(DP Master (Class 1) or PROFINET IO Controller) programmed in IEC 61131-3.

PLC
as Supervisor

(programmed in IEC 61131-3)

PLC
as Field Device

programmed in IEC 61131-3

Remote I/O
as Field Device

Field Device

IO Subsystem

PLC
as Host Controller

programmed in IEC 61131-3

Figure 9 – System with a PLC as Host Controller

The following function blocks define the application program interface to the basic services for a
PLC acting as a Host Controller:

• GETIO: Get input data of a Field Device

• SETIO: Set output data of a Field Device

• GETIO_PART: Get a part of input data of a Field Device

• SETIO_PART: Set a part of output data of a Field Device

• RDREC: Read a process data record from a Field Device

• WRREC: Write a process data record to a Field Device

• RALRM: Receive an alarm from a Field Device

• RDIAG: Read diagnosis information from a Field Device

The following function blocks define a application program interface with higher communication
functions using the basic services for a PLC acting as a Host Controller:

• ICRTL: Request a interlocked control function from a Field Device

3.2 Cyclic Exchange of IO data object

3.2.1 General
The figure below shows the two FBs for cyclic exchange of IO data object.

 GETIO SETIO

BOOL --- EN ENO --- BOOL BOOL --- EN ENO --- BOOL
DWORD --- ID STATUS --- DWORD DWORD --- ID STATUS --- DWORD

 LEN --- INT INT --- LEN
ANY --- INPUTS-- --INPUTS ANY --- OUTPUTS-- --OUTPUTS

Figure 10 – Communication Function Blocks for cyclic exchange of data

© Copyright PNO 2005 - All Rights Reserved Page 27 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

The function blocks for cyclic exchange of IO data object are used when a PLC is acting as a
Host Controller.

A Host Controller transfers output data cyclically to its Field Device, in return it gets the input
data from the Field Device. The IO data object may be accessed by the application program via
the %I or %Q areas or be read or written using the function blocks GETIO and SETIO as defined
below. Enabling a Communication Function Block for cyclic exchange of IO data object means,
that the IO data object is transferred to or from the Host Controller interface.

Application program

GETIO

SETIO

inputs

%I

Host Controller

Field Device

%Q

Outputs
to a slot

outputs

Cyclic transfer
of Field Device inputs

Transfer on
call

Cyclic transfer
of Field Device outputs

Inputs from
a slot

Figure 11 – Communication path for cyclic IO data object

NOTE 1 The same output data should not be written by different function block instances or be written
via the %Q interface, because which values are transferred to the slave may be unpredictable.

NOTE 2 Process image vs. direct access, manufacturer dependent

The GETIO function block gets the input data of the addressed slot or subslot of a Field Device
from the Host Controller interface out of the cyclically read input data of the Field Device.

The GETIO_PART function block gets only a part of the input data of the addressed slot or sub-
slot of a Field Device from the Host Controller interface out of the cyclically read input data of the
Field Device.

© Copyright PNO 2005 - All Rights Reserved Page 28 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

The SETIO function block transfers the output data of a slot or subslot to the Host Controller in-
terface. The Host Controller collects the data of the Field Device and cyclically transfers these
outputs to a slot or subslot of the Field Device.

The SETIO_PART function block transfers only a part of the output data of a slot or subslot to
the Host Controller interface. The Host Controller collects the data of the Field Device and cycli-
cally transfers these outputs to a slot or subslot of the Field Device.

3.2.2 Get IO data object (GETIO)

The communication function Get IO data object for a Host Controller uses the GETIO function
block defined in this clause. One instance of a GETIO function block provides one instance of
the PLC function Get IO data object. The function is invoked by a 1 of the EN input.

The ID parameter identifies the Field Device or the slot or subslot of a Field Device the IO data
object is read from.

NOTE An array declaration with zero elements is not supported in IEC 61131-3, therefore the mini-
mum length shall be 1 byte even if the record length is zero. The actual length is given with the LEN
parameter.

If the input data are valid, the ENO output is set to 1 and the Input data are stored in the variable
given at the INPUTS parameter. The variable passed to the INPUTS parameter shall be of ap-
propriate size to receive the input data. The LEN output contains the length of the read input
data in byte. The output parameters of this FB are set synchronously.

If a variable at the %I area is referenced at the INPUTS parameter the implementer shall specify
the rules using this variable with this parameter.

If an error occurred, the ENO output is set to 0 and the STATUS output contains the error code.
The STATUS values are defined in Table 2.

© Copyright PNO 2005 - All Rights Reserved Page 29 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

GETIO

BOOL --- EN ENO --- BOOL
DWORD --- ID STATUS --- DWORD

 LEN --- INT
ANY --- INPUTS-- --INPUTS

 FUNCTION_BLOCK GETIO (* Get IO data object *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 ID : DWORD; (* Identifier of a slot or subslot of a Field Device *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Flag *)
 STATUS : DWORD; (* Last detected status *)
 LEN : INT; (* Length of the IO data object *)
 END_VAR

 VAR_IN_OUT
 INPUTS : ANY; (* Input data *)
 END_VAR

Example: Get inputs of a slot of a DP-slave

VAR D2S3: DWORD;
 I1 : ARRAY [1..20] OF BYTE;
 GET1: GETIO;

D2S3:= ID(1,0,2,3) (* Handle for Slave 2, Slot 3 at DP system 1 *)
GET1 (ID:=D2S3, INPUTS:=I1);
IF STATUS=0 THEN (* process input data *)
..

Figure 12 – GETIO function block

NOTE The EN and ENO parameters are optional and may be omitted when calling an instance of the func-
tion block in textual languages.

The following state diagram describes the algorithm of the GETIO function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the GETIO function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 30 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

READING
S3

S4
HAVE_DATA

S5
ERROR

S2
IDLE

T1

T2 Invocation [EN=1]

T3 ValidData

T5 Invocation
T6 Invocation

Figure 13 – State diagram of GETIO function block

The following table defines the transitions and actions given in the state diagram above.

Table 8 - Transitions and actions for GETIO state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
no actions

S3 READING

read device data
Evaluate FB input ID. Get IO data object from Host Controller with Rem Add= out of ID
input,
Inp Data= INPUTS parameter

S4 HAVE_ DATA
indicate valid data
Deposit IO data object in INPUTS parameter and set LEN output set FB outputs

S5 ERROR
indicate error
set FB outputs

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done ENO := 0
STATUS := 0
INPUTS, LEN :=
 System null

T2 S2 S3
Invocation
(Next invocation)

EN=1 ENO := ---
STATUS := ---
INPUTS, LEN := ---

T3 S3 S4

ValidData
(Valid IO data object)

 ENO := 1
STATUS := 0
INPUTS, LEN := New
 data

© Copyright PNO 2005 - All Rights Reserved Page 31 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T4 S3 S5

Error
(No valid IO data
object)

 ENO := 0
STATUS := error code
INPUTS, LEN := ---

T5 S5 S2
Invocation
(Next invocation)

 ENO := ---
STATUS := ---
INPUTS, LEN := ---

T6 S5 S2
Invocation
(Next invocation)

 ENO := ---
STATUS := ---
INPUTS, LEN := ---

--- indicates “unchanged” FB outputs

3.2.3 Set IO data object (SETIO)

The communication function Set IO data object for a Host Controller uses the SETIO function
block defined in this clause. One instance of a SETIO function block provides one instance of the
PLC function Set IO data object. The function is invoked by a 1 of the EN input.

The ID parameter identifies the slot or subslot of the Field Device the IO data object is set for.
The IO input contains the IO data object that shall be written to the slot or subslot of the Field
Device. The variable passed to the OUTPUTS parameter shall be of appropriate size to provide
the output data. The LEN input contains the length of the Output data in byte.

NOTE An array declaration with zero elements is not supported in IEC 61131-3, therefore the minimum
length shall be 1 byte even if the record length is zero. The actual length is given with the LEN parame-
ter.

If the Output data are stored successfully and the Field Device is still cyclically communicating,
the ENO output is set to 1. The output parameters of this FB are set synchronously.

If an error occurred, the ENO output is set to 0 and the STATUS output contains the error code.

© Copyright PNO 2005 - All Rights Reserved Page 32 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

SETIO

BOOL --- EN ENO --- BOOL
DWORD --- ID STATUS --- DWORD

INT --- LEN
ANY --- OUTPUTS--- ---OUTPUTS

 FUNCTION_BLOCK SETIO (* Set Output data *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 ID : DWORD; (* Identifier of a slot or subslot of a Field Device *)
 LEN : INT; (* Length of the IO data object *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Flag *)
 STATUS : DWORD; (* Last detected status *)
 END_VAR

 VAR_IN_OUT
 OUTPUTS : ANY; (* IO data object to write *)
 END_VAR

Example: Set outputs of a slot of a DP-slave

VAR D2S3: DWORD;
 Q1 : ARRAY [1..10] OF BYTE;
 SET1: SETIO;

D2S3:= ID(1,0,2,3) (* Handle for Slave 2, Slot 3 at DP system 1 *)
Q1[1]:= 17; ...
SET1 (ID:=D2S3, OUTPUTS:=Q1);

Figure 14 – SETIO function block

NOTE The EN and ENO parameters are optional and may be omitted when calling an instance of the func-
tion block in textual languages.

The following state diagram describes the algorithm of the SETIO function block. The following
table describes the transitions and actions of this state diagram and the actions to be performed
within the states and the settings of the SETIO function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 33 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S4
DONE

S5
ERROR

S2
IDLE

T1

T2 Invocation [EN=1]

T3 NoError T4 Error

T5 Invocation
T6 Invocation

S3 WRITING

Figure 15 – State diagram of SETIO function block

The following table defines the transitions and actions given in the state diagram above.

Table 9 - Transitions and actions for SETIO state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
no actions

S3 WRITING
read device data
Transfer IO data object to DP-master with Rem Add= out of ID input Out Data=
OUTPUTS parameter

S4 DONE
indicate valid data
Deposit data in parameter LEN

S5 ERROR
indicate error
set FB outputs

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2
Initialisation done ENO := 0

STATUS := 0

T2 S2 S3
Invocation
(Next invocation)

EN=1 ENO := ---
STATUS := ---

T3 S3 S4
NoError
(No communication
problems detected)

 ENO := 1
STATUS := 0

T4 S3 S5
Error
(Communication prob-
lems detected)

 ENO := 0
STATUS := error code

T5 S5 S2
Invocation
(Next invocation)

 ENO := ---
STATUS := ---

T6 S5 S2
Invocation
(Next invocation)

 ENO := ---
STATUS := ---

--- indicates “unchanged” FB outputs

© Copyright PNO 2005 - All Rights Reserved Page 34 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

3.2.4 Get a Part of IO data object (GETIO_PART)

The GETIO_PART function block gets a subset of the input data associated to a slot or subslot
of a Field Device.

The input data are addressed within the slot or subslot through OFFSET and LEN parameters.
The GETIO_PART function block gets the input data from the Host Controller interface out of the
cyclically read input data of the Field Device. The function block is invoked by a 1 of the EN in-
put.

The ID parameter identifies the Field Device or the slot or subslot of a Field Device the IO data
object is read from. The parameter OFFSET and LEN addresses an individual subset within
these IO data object. The OFFSET parameter contains the number of the first byte to be read.
The input data of the slot or subslot are counted beginning with 0. The LEN input contains the
length of the input data to read in byte.

If the input data are valid, the ENO output is set to 1, the ERROR output is set to 0, and the input
data are stored in the variable given at the INPUTS parameter. The variable passed to the
INPUTS parameter shall be of appropriate size to receive the input data. The output parameters
of this FB are set synchronously.

NOTE For PROFIBUS DP an ARRAY[1..244] OF BYTE can hold the data in all cases.

If a variable at the %I area is referenced at the INPUTS parameter the implementer shall specify
the rules using this variable with this parameter.

If an error occurred, the ENO output is set to 0, the ERROR output is set to 1, and the STATUS
output contains the error code. The STATUS values are defined in [3]. If the OFFSET and LEN
parameters address a range out of the scope of the input data of the slot the STATUS parameter
is set with STATUS[3]=16#B7.

NOTE On EN=0 the ENO output is set to 0, and the function block may be not invoked at all, and all
other outputs of the function block may be frozen.

© Copyright PNO 2005 - All Rights Reserved Page 35 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

GETIO_PART

BOOL --- EN ENO --- BOOL
DWORD --- ID STATUS --- DWORD

INT --- OFFSET ERROR --- BOOL
INT --- LEN
ANY --- INPUTS-- --INPUTS

 FUNCTION GETIO_PART (* Get a part of slot or subslot related IO data object *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 ID : DWORD; (* Identifier of a slot or subslot of a Field Device *)
 OFFSET : INT ; (* Count of the first byte within the IO data object *)
 LEN : INT; (* Length of the data to read *)
END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Flag *)
 STATUS : DWORD; (* Last detected status *)
 ERROR : BOOL; (* Flag indication an error *)
 END_VAR

 VAR_IN_OUT
 INPUTS : ANY; (* Requested subset of the input data *)
 END_VAR

Example: Get inputs of a part of the slot data of a DP-slave

VAR D2S3: DWORD;
 I1 : ARRAY [1..20] OF BYTE;
 CH2 : INT; (* offset of the channel within the slot *)
 L2 : INT: (* length of the channel data *)
 GET1: GETIO_PART;
END_VAR

D2S3:= ID(1,0,2,3) (* Handle for Slave 2, Slot 3 at DP system 1 *)
GET1 (ID:=D2S3, OFFSET:=CH2, LEN:=L2, INPUTS:=I1);
IF ERROR=0 THEN (* process input data *)
..

Figure 16 – GETIO_PART function block

NOTE The EN and ENO parameters are optional and may be omitted when calling an instance of the func-
tion block in textual languages.

The following state diagram describes the algorithm of the GETIO_PART function block. The fol-
lowing tables describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the GETIO_PART function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 36 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

READING
S3

S4
HAVE_DATA

S5
ERROR

S2
IDLE

T1

T2 Invocation [EN=1]

T3 ValidData

T5 Invocation
T6 Invocation

T4 Error

Figure 17 – State diagram of GETIO_PART function block

The following table defines the transitions and actions given in the state diagram above.

Table 10 - Transitions and actions for GETIO_PART state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
no actions

S3 READING
read device data
Evaluate input ID, OFFSET and LEN. Get IO data object from Host Controller with
Rem Add= out of ID, OFFSET and LEN input Inp Data= INPUTS parameter

S4 HAVE_ DATA
indicate valid data
Deposit subset of the input data of the slot, addressed by OFFSET and LEN in
INPUTS parameter

S5 ERROR
indicate error
set FB outputs

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done ENO := 0
ERROR :=0
STATUS := 0
INPUTS := system null

T2 S2 S3

Invocation
(Next invocation)

EN=1 ENO := ---
ERROR := ----
STATUS := ---
INPUTS := ---

T3 S3 S4

ValidData
(Valid IO data object,
OFFSET and LEN
address data inside
the input data of the
slot)

 ENO := 1
ERROR :=0
STATUS := 0
INPUTS := New data

© Copyright PNO 2005 - All Rights Reserved Page 37 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T4 S3 S5

Error
(No valid IO data ob-
ject or OFFSET and
LEN address data
outside the input data
of the slot)

 ENO := 0
ERROR := 1
STATUS := New Error
 code
INPUTS := ---

T5 S5 S2

Invocation
(Next invocation)

 ENO := ---
ERROR := ----
STATUS := ---
INPUTS := ---

T6 S5 S2

Invocation
(Next invocation)

 ENO := ---
ERROR := ----
STATUS := ---
INPUTS := ---

--- indicates “unchanged” FB outputs

3.2.5 Set IO data object Related to a Part of a Slot (SETIO_PART)

The SETIO_PART function block sets the output data for a subset of the output data associated
to a slot or subslot of a Field Device. The output data are addressed within the slot or subslot
through the OFFSET and LEN parameters. The SETIO_PART function block sets the output
data to the Host Controller interface into the cyclically written output data of the Field Device.
The function block is invoked by a 1 of the EN input.

The ID parameter identifies the slot or subslot of the Field Device the output data are set for. The
OFFSET and LEN parameters identifies a subset of data within a slot or subslot of the Field De-
vice the output data are set for. The OFFSET parameter contains the number of the first byte to
be written, the output data of the slot or subslot are counted beginning with 0. The LEN input
contains the length of the output data in byte. The OUTPUTS parameter contains the subset of
the output data that shall be written to the slot or subslot of the Field Device. The variable
passed to the OUTPUTS parameter shall be of appropriate size to provide the output data.

NOTE For PROFIBUS DP an ARRAY[1..244] OF BYTE can hold the data in all cases.

If the Output data are stored successfully and the Field Device is still cyclically communicating,
the ENO output is set to 1. The output parameters of this function block are set synchronously.

If an error occurred, the ENO output is set to 0, the ERROR output is set to 1, and the STATUS
output contains the error code. Additionally if the OFFSET and LEN parameters address a range
out of the scope of the data of the slot a STATUS parameters is set with STATUS[3]=16#B7.

NOTE On EN=0 the ENO output is set to 0, and the function block may be not invoked at all, and all
other outputs of the function block may be frozen.

© Copyright PNO 2005 - All Rights Reserved Page 38 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

SETIO_PART

BOOL --- EN ENO --- BOOL
DWORD --- ID STATUS --- DWORD

INT --- OFFSET ERROR --- BOOL
INT --- LEN
ANY --- OUTPUTS--- ---OUTPUTS

 FUNCTION SETIO_PART (* Set Output data to a part of a slot or subslot*)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 ID : DWORD; (* Identifier of a slot / subslot of a Field Device *)
 OFFSET : INT ; (* Offset of the subset of output data *)
 LEN : INT; (* Length of the output data to write *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Flag *)
 STATUS : DWORD; (* Last detected status *)
 ERROR : BOOL; (* Flag indication an error *)
 END_VAR

 VAR_IN_OUT
 OUTPUTS : ANY; (* IO data object to write *)
 END_VAR

Example: Set a part of the outputs of a slot of a DP-slave

VAR D2S3: DWORD;
 CH2 : INT; (* offset of the subset of data within the slot *)
 L2 : INT; (* Length of the output data to write *)
 Q1 : ARRAY [1..10] OF BYTE;
 SET1: SETIO_PART;
END_VAR

D2S3:= ID(1,0,2,3) (* Handle for Slave 2, Slot 3 at DP system 1 *)
Q1[1]:= 17; ...
SET1 (ID:=D2S3, OFFSET:=CH2, LEN:=L2, OUTPUTS:=Q1);

Figure 18 – SETIO_PART function block

NOTE The EN and ENO parameters are optional and may be omitted when calling an instance of the func-
tion block in textual languages.

The following state diagram describes the algorithm of the SETIO_PART function block. The fol-
lowing tables describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the SETIO_PART function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 39 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S4
DONE

S5
ERROR

S2
IDLE

T1

T2 Invocation [EN=1]

T3 NoError

T5 Invocation
T6 Invocation

S3 WRITING

T4 Error

Figure 19 – State diagram of SETIO_PART function block

The following table defines the transitions and actions given in the state diagram above.

Table 11 - Transitions of the SETIO_PART state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
no actions

S3 WRITING Evaluate input ID, OFFSET and LEN Transfer IO data object to Field Device with
Rem Add= out of ID, OFFSET and LEN input Out Data= OUTPUTS parameter

S4 DONE No actions

S5 ERROR
indicate error
set FB outputs

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2
Initialisation done ENO := 0

ERROR := 0
STATUS := 0

T2 S2 S3
Invocation
(Next invocation)

EN=1 ENO := ---
ERROR := ---
STATUS := ---

T3 S3 S4

NoError
(No communication
problems detected,
OFFSET and LEN
address data inside
the output data of the
slot)

 ENO := 1
ERROR := 0
STATUS := 0

© Copyright PNO 2005 - All Rights Reserved Page 40 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T4 S3 S5

Error
(Communication prob-
lems detected or
OFFSET and LEN
address data outside
the output data of the
slot)

 ENO := 0
ERROR := 1
STATUS := New error
 code

T5 S5 S2
Invocation
(Next invocation)

 ENO := ---
ERROR := ---
STATUS := ---

T6 S5 S2
Invocation
(Next invocation)

 ENO := ---
ERROR := ---
STATUS := ---

--- indicates “unchanged” FB outputs

3.3 Exchange of Process Data Records

3.3.1 General
The figure below shows the Communication Function Blocks for acyclic exchange of process
data records.

The function blocks for acyclic exchange of process data records are used when a PLC is acting
as a Host Controller.

 RDREC WRREC

BOOL --- REQ VALID --- BOOL BOOL --- REQ DONE --- BOOL
DWORD --- ID BUSY --- BOOL DWORD --- ID BUSY --- BOOL

INT --- INDEX ERROR --- BOOL INT --- INDEX ERROR --- BOOL
INT --- MLEN STATUS --- DWORD INT --- LEN STATUS --- DWORD

 LEN --- INT ANY --- RECORD-- --RECORD
ANY --- RECORD-- --RECORD

Figure 20 – Communication Function Blocks for acyclic exchange of data records

The function blocks for writing and reading have the similar parameter set except the different
association of the send/read data as input or output parameters.

3.3.2 Read Process Data Record (RDREC)

The communication function Read Process Data Record for a Host Controller uses the RDREC
function block defined in this clause. One instance of a RDREC function block provides one in-
stance of the PLC function Read Process Data Record. The function is invoked when REQ input
is equal to 1.

The ID parameter identifies the slot or subslot of the Field Device the data record is read from.
The INDEX input of the READ function block contains an integer which identifies the data record
to be read.

The MLEN parameter specifies the count of bytes which shall be read as an maximum. The vari-
able given as RECORD parameter shall be at least of MLEN byte.

If the data record is read successfully, the VALID output indicates that the read data record is
stored in the RECORD parameter. The LEN output contains the length of the data record in byte.

If an error occurred, the ERROR output indicates an error and the STATUS output contains the
error code. The STATUS values are defined in Table 2.

© Copyright PNO 2005 - All Rights Reserved Page 41 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

RDREC

BOOL --- REQ VALID --- BOOL
DWORD --- ID BUSY --- BOOL

INT --- INDEX ERROR --- BOOL
INT --- MLEN STATUS --- DWORD

 LEN --- INT
ANY --- RECORD-- --RECORD

 FUNCTION_BLOCK RDREC (* Read process data record *)
 VAR_INPUT
 REQ : BOOL; (* Request *)
 ID : DWORD; (* Identifier of a slot / subslot of a Field Device *)
 INDEX : INT; (* Index of the data record *)
 MLEN : INT; (* maximum length to be read *)
 END_VAR

 VAR_OUTPUT
 VALID : BOOL; (* New data record received and is valid *)
 ERROR : BOOL; (* Error detected *)
 BUSY : BOOL; (* FB is busy *)
 STATUS : DWORD; (* Last detected status *)
 LEN : INT; (* Length of the read data record *)
 END_ VAR

 VAR_IN_OUT

 RECORD : ANY; (* Read data record *)
 END_VAR

Timing Diagram:
 1 2 3

REQ

VALID

ERROR

BUSY

Invocation

Case 1:
The REQ input remains 1 until the function block invocation has completed, it is
reset by the user when VALID gets 1.
Case 2:
The user pulses the REQ input only for one invocation. The request is not
aborted.
Case 3:
Like case 1, but an error occurred.

Figure 21 – RDREC function block

The following state diagram describes the algorithm of the RDREC function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the RDREC function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 42 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S4
HAVE_DATA

S5
ERROR

S2
IDLE

T1

S3 WAITING

T2 Invocation [REQ=1]

T4 Neg_responseT3 Pos_response

T6 Invocation
T5 Invocation

Figure 22 – State diagram of RDREC function block

The following table defines the transitions and actions given in the state diagram above.

Table 12 - Transitions and actions for RDREC state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 WAITING

read device data
Evaluate FB inputs ID and INDEX.
Request variables from remote communication partner:
ProcessData.Read.Req or Read.Req addressing the Field Device as specified with the
ID parameter
Index= INDEX
Length= MLEN

S4 HAVE_ DATA
indicate valid data
Deposit data in parameter LEN and RECORD

S5 ERROR
indicate error
set FB outputs

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done VALID := 0
BUSY := 0
ERROR := 0
STATUS := 0
LEN := System null

T2 S2 S3

Invocation
(Next invocation)

REQ=1 Evaluate inputs
VALID := 0
BUSY := 1
ERROR := 0
STATUS := -1 (is
busy)
LEN := System null

© Copyright PNO 2005 - All Rights Reserved Page 43 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T3 S3 S4

Pos_response
(Positive response from re-
mote communication partner:
ProcessData.Read.Cnf(+) for
PROFIBUS DP or
Read.Cnf(+) for PROFINET
IO)

 VALID := 1
BUSY := 0
ERROR := 0
STATUS := 0
LEN := New data

T4 S3 S5

Neg_response
(Negative response from
remote communication part-
ner or other communication
problems detected:
ProcessData.Read.Cnf(-) for
PROFIBUS DP or Read.Cnf(-
) for PROFINET IO or
Abort.Ind or local problems)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := New
 errorCode
LEN := System null

T5 S4 S2

Invocation
(Next invocation)

 VALID := 1
BUSY := 0
ERROR := 0
STATUS := 0
LEN := datalen

T6 S5 S2

Invocation
(Next invocation)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := errorCode
LEN := System null

--- indicates “unchanged” FB outputs

3.3.3 Write Data Record (WRREC)

The communication function Write Process Data Record for a Host Controller uses the WRREC
function block defined in this clause. One instance of a WRREC function block provides one in-
stance of the PLC function Write Process Data Record. The function is invoked when the REQ
input is equal to 1.

The ID parameter identifies the slot or subslot of the Field Device the process data record is writ-
ten to. The INDEX input of the WRREC function block contains an integer which identifies the
data record to be written. The data record shall be stored in the variable given at the RECORD
parameter. The LEN input contains the length of the data record to be written in byte. The vari-
able given as RECORD parameter shall be at least of LEN byte.

NOTE An array declaration with zero elements is not supported in IEC 61131-3, therefore the mini-
mum length shall be 1 byte even if the record length is zero. The actual length is given with the LEN
parameter.

The values of the RECORD and LEN parameters shall not be changed as long as the BUSY out-
put is true.

If the data record is written successfully, the DONE output indicates that the read data record is
written to the Field Device.

If an error occurred, the ERROR output indicates an error and the STATUS output contains the
error code. The STATUS values are defined in Table 2.

© Copyright PNO 2005 - All Rights Reserved Page 44 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

WRREC

BOOL --- REQ DONE --- BOOL
DWORD --- ID BUSY --- BOOL

INT --- INDEX ERROR --- BOOL
INT --- LEN STATUS --- DWORD
ANY --- RECORD-- --RECORD

 FUNCTION_BLOCK WRREC (* Write process data record *)
 VAR_INPUT
 REQ : BOOL; (* Request *)
 ID : DWORD; (* Identifier of a slot / subslot of a Field Device *)
 INDEX : INT; (* Number of the data record *)
 LEN : INT; (* Length of the data record *)
 END_VAR

 VAR_OUTPUT
 DONE : BOOL; (* Data record written *)
 BUSY : BOOL; (* FB is busy *)
 ERROR : BOOL; (* Error detected *)
 STATUS : DWORD; (* Last detected status *)
 END_VAR

 VAR_IN_OUT
 RECORD : ANY; (* Data record *)
 END_VAR

Timing Diagram:
 1 2 3

REQ

VALID

BUSY

ERROR

Invocation

Case 1:
The REQ input remains 1 until the function block invocation has completed, it is reset by the user when DONE
gets 1.
Case 2:
The user pulses the REQ input only for one invocation. The request is not aborted.
Case 3:
Like case 1, but an error occurred.

Figure 23 – WRREC function block

The following state diagram describes the algorithm of the WRREC function block. The following
table describes the transitions and actions of this state diagram and the actions to be performed
within the states and the settings of the WRREC function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 45 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S4
DATA_WRITTEN

S5
ERROR

S2
IDLE

T1

S3
WAITING

T2 Invocation [REQ=1]

T4 Neg_response

T6 Invocation

T3 Pos_response

T5 Invocation

Figure 24 – State diagram of WRREC function block

The following table defines the transitions given in the state diagram above.

Table 13 - Transitions of the WRREC state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 WAITING

Evaluate FB parameters ID, INDEX, LEN and RECORD
Request variables from remote communication partner:
ProcessData.Write.Req or Write.Req
addressing the Field Device as specified with the ID parameter
Index= INDEX
Length= LEN
Data= RECORD

S4 DATA_WRITTEN Indicate done
S5 ERROR indicate error

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done VALID := 0
BUSY := 0
ERROR := 0
STATUS := 0

T2 S2 S3

invocation
(Next invocation)

REQ=1 VALID := 0
BUSY := 1
ERROR := 0
STATUS := -1 (is
busy)

© Copyright PNO 2005 - All Rights Reserved Page 46 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T3 S3 S4

Pos_response
(Positive response from
remote communication
partner:
ProcessData.Write.Cnf(+)fo
r PROFIBUS DP or
Write.Cnf(+) for PROFINET
IO)

 VALID := 1
BUSY := 0
ERROR := 0
STATUS := 0

T4 S3 S5

Neg_response
(Negative response from
remote communication
partner or other communi-
cation problems detected:
ProcessData.Write.Cnf(-)
for PROFIBUS DP or
Write.Cnf(-) for PROFINET
IO or Abort.Ind or local
problems)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := New
 errorCode

T5 S4 S2

Invocation
(Next invocation)

 VALID := 1
BUSY := 0
ERROR := 0
STATUS := 0

T6 S5 S2

Invocation
(Next invocation)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := errorCode

--- indicates “unchanged” FB outputs

3.4 Alarms and Diagnosis

3.4.1 General

A Field Device may send alarms to a Host Controller. The PLC operating system may react on
an incoming alarm by activating a task (see IEC 61131-3) of the application program. Or the ap-
plication program may poll for alarm cyclically. Using the function block RALRM the application
program can poll for the alarm or get more information about the alarm when activated by a task.

If the alarm activates a task the PLC operating system shall acknowledge the alarm automati-
cally when the task is terminated. If the alarm is polled by the application program, the applica-
tion program is responsible to acknowledge the alarm by using the Communication Function
Block RALRM.

Additionally the PROFIBUS DP systems provides diagnosis status information about the DP-
slaves associated to a DP-master (Class 1). This information can be retrieved using the function
block RDIAG.

3.4.2 Receiving Alarms (RALRM)

The communication function Receive Alarm for a Host Controller uses the RALRM function block
defined in this clause. One instance of a RALRM function block provides one instance of the PLC
function Receive Alarm.

The function is invoked by EN=1. The MODE input controls the functionality of the RALRM func-
tion block.

This function blocks contains the methods to receive and acknowledge an alarm. All aspects of
receiving an alarm shall use one function block instance, the different methods are distinguished
using the MODE input.

© Copyright PNO 2005 - All Rights Reserved Page 47 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

MODE Meaning

1 Receive all alarms:
If the Host Controller interface has received an alarm, all function block outputs are
updated. The alarm is acknowledged.

2 Receive alarms from one slot or subslot:
If the Host Controller interface has received an alarm for the slot or subslot the identi-
fication of which is given in F_ID input, all function block outputs are updated. The
alarm is acknowledged.

The MLEN parameter specifies the count of bytes which shall be received as a maximum of the
alarm information. The byte array given as AINFO parameter shall be at least of MLEN byte.

NOTE An array declaration with zero elements is not supported in IEC 61131-3, therefore the minimum
length shall be 1 byte even if the record length is zero. The actual length is given with the LEN parame-
ter.

If an alarm is received (with MODE=1 or MODE=2), the NEW output indicates that the alarm in-
formation is stored in the outputs. The LEN output contains the length in byte of the additional
alarm information stored in the AINFO parameter.

The AINFO parameter contains alarm information of the following structure depending on the
used IO subsystem type:

Table 14 - Structure of the variable at AINFO parameter for PROFIBUS DP

Off-
set

Name Data Type Meaning

0 D_LEN BYTE Length of the alarm information: 4 .. 63

1 ATYPE BYTE Alarm Type:
1 Diagnosis Alarm
2 Process Alarm
3 Pull Alarm
4 Plug Alarm
5 Status Alarm
6 Update Alarm
32-126 Manufacturer Specific

2 SLOT BYTE Slot number

3 ASPEC BYTE Alarm Specifier:
0 no further differentiation
1 Alarm appears and the related module is disturbed
2 Alarm disappears and the related module has no further

errors
3 Alarm disappears and the related module is still dis-

turbed

4 -
62

ADD_INFO ARRAY [1..x] OF
BYTE

Additional alarm information with a maximum of 59 bytes

Table 15 - Structure of the variable at AINFO parameter for PROFINET IO

Offset Name Description

0-1 BlockType reserved BlockType

2-3 BlockLength BlockLength

4-5 Version VersionHigh VersionLow

6-7 Typ AlarmType

© Copyright PNO 2005 - All Rights Reserved Page 48 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Offset Name Description

8-11 API Application Process Identifier

12-13 Slot Slot Number

14-15 Subslot Subslot Number

16-19 Modul Identification

20-23

Source ID

Submodul Identification

24-25 Alarm Specifier

ARDiagn
osisStat

e

Bit 15

Reserved
Bit 14

Submodule
Diagnosis-

State

Bit13

Manufacture
r Diagnosis

Bit12

Channel
Diagnosis

Bit11

Sequence Nummer

Bit 0 .. 10

26-27 User structure
identifier User structure identifier

ab 28 User Alarm-Info (0...xx Byte)

See PROFINET IO V2.00 for detailed information.

The variable passed to the AINFO parameter shall be of appropriate size to receive the addi-
tional alarm information.

NOTE The RALRM function block is used to receive alarm information of alarms from a PROFIBUS DP
or a PROFINET IO subsystem. It may also come from other IO subsystem types. In this case the
AINFO parameter may be of different length and structure. The implementer shall specify the content of
the alarm information in these cases.

If a task is started when an alarm is received the variable given at the TINFO parameter may
contain additional task information. The implementer shall specify the content of the task infor-
mation TINFO.

NOTE The structure of additional alarm information given at ´the AINFO parameter is defined by the
used IO subsystem. The information how to interpret this information should be given in the information
given via the TINFO parameter.

© Copyright PNO 2005 - All Rights Reserved Page 49 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

RALRM

BOOL --- EN ENO --- BOOL
INT --- MODE NEW --- BOOL

DWORD --- F_ID STATUS --- DWORD
INT --- MLEN ID --- DWORD

 LEN --- INT
ANY --- TINFO-- --TINFO
ANY --- AINFO-- --AINFO

 FUNCTION_BLOCK RALRM (* Receive alarm *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 MODE : INT; (* Function specifier *)
 F_ID : DWORD; (* Slot / subslot identification to filter *)
 (* the alarms to receive *)
 MLEN : INT; (* Maximum length of the alarm info to receive *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Function enabled, no error *)
 NEW : BOOL; (* New alarm received *)
 STATUS : DWORD; (* Host Controller interface status *)
 ID : DWORD; (* Identifier of the slot / subslot the alarm *)
 (* is received from *)
 LEN : INT; (* Length of the received data record *)
 END_VAR

 VAR_IN_OUT
 TINFO : ANY; (* Additional task information *)
 AINFO : ANY; (* Additional alarm information *)
 END_VAR

Example: Receive an alarm for all slots of all Field Devices

VAR A1: AINFO_TYPE;
 T1: ARRAY [1..26] OF BYTE;
 ALRM1: RALRM;

ALRM1 (EN:=1, MODE:=1, MLEN:=63, TINFO:= T1, AINFO:=A1);
IF NEW=1 THEN (* process alarm, the source identification is in
 ALRM1.ID, the alarm type in ALRM1.A1.ATYPE, ... *)
..

Figure 25 – RALRM function block

The following state diagram describes the algorithm of the RALRM function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the RALRM function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 50 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S7
ACK

S8
ERROR

S2 IDLE S4 ACK

S3 ENABLED

S5 RECEIVED

S6 CHECK

T1

A

T2 Invocation [EN=1]
T3 [EN=0]

T4 Alarm_unack

T8 Immediate

T6 Ind_unack

T9 Invocation
T5 Alarm [MODE=1 || (MODE=2 && FSLOT)]

T7 Immediate

T10 Invocation T11 Invocation

T12 Error

Figure 26 – State diagram of RALRM function block

The ERROR state may be entered from the states ENABLED, CHECK, RECEIVED, POS_ACK or
NEG_ACK if a communication error is detected.

The following table defines the transitions and actions given in the state diagram above.

Table 16 - Transitions and actions for RALRM state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 ENABLE No actions

S4 / S7 ACK
Positive response to DP-Master:
Alarm.rsp(+) with parameters taken from the indication

S5 RECEIVED Deposit data in parameter ID, LEN, TINFO, and AINFO
S6 CHECK Update outputs ID and LEN
S8 ERROR indicate error

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done ENO := 0
NEW := 0
ID, LEN := System null
TINFO, AINFO := ---
STATUS := 0

© Copyright PNO 2005 - All Rights Reserved Page 51 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T2 S2 S3

Invocation
(Next invocation)

EN=1 ENO := 1
NEW := 0
ID, LEN := 0
TINFO, AINFO := ---
STATUS := ---

T3 S3 S2

EN=0 ENO := 0
NEW := 0
ID, LEN := System null
TINFO, AINFO := ---
STATUS := 0

T4 S2 S4

Alarm_unack
(Unacknowledged alarm from
Field Device:
Alarm.Ind for PROFIBUS DP
or AlarmNotification.Ind for
PROFIBUS IO)

 ENO := 1
NEW := ---
ID, LEN := ---
TINFO, AINFO := ---
STATUS := ---

T5 S3 S5

Alarm
(indication from Field Device:
Alarm.Ind for PROFIBUS DP
or AlarmNotification.Ind for
PROFIBUS IO)

MODE=1 or
(MODE=2 and
FSLOT=slot
identification of
the alarm)

ENO := 1
NEW := 1
ID, LEN := New data
TINFO, AINFO
 := New info
STATUS := ---

T6 S3 S6

Ind_unack
(unacknowledged indication
from DP-slave)

MODE=0 ENO := 1
NEW := 1
ID, LEN := New data
TINFO, AINFO := ---
STATUS := ---

T7 S5 S7

Immediate ENO := 1
NEW := ---
ID, LEN := ---
TINFO, AINFO := ---
STATUS := ---

T8 S4 S2

Immediate ENO := 0
NEW := 0
ID, LEN := System null
TINFO, AINFO := ---
STATUS := 0

T9 S6 S3

Invocation
(nest invocation)

 ENO := 1
NEW := 0
ID, LEN := 0
TINFO, AINFO := ---
STATUS := ---

T10 S7 S3

Invocation
(nest invocation)

 ENO := 1
NEW := 0
ID, LEN := 0
TINFO, AINFO := ---
STATUS := ---

T11 S8 S3

Invocation
(nest invocation)

 ENO := 1
NEW := 0
ID, LEN := 0
TINFO, AINFO := ---
STATUS := ---

T12 S3, S4, S5,
S6, S10 S8

Error
(Communikation error
detected)

 ENO := 0
NEW := 0
ID, LEN := ---
TINFO, AINFO := ---
STATUS := New
status

--- indicates “unchanged” FB outputs

© Copyright PNO 2005 - All Rights Reserved Page 52 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

3.4.3 Read Diagnosis (RDIAG)

This function is provided only for PROFIBUS DP.

The communication function Read Diagnosis for a DP-master (Class 1) uses the RDIAG function
block defined in this clause. The DP system provides diagnosis status information about the DP-
slave to a DP-Master. One instance of a RDIAG function block provides one instance of the PLC
function Read Diagnosis. The function is invoked when the REQ input is equal to 1.

The ID parameter identifies the slot of the Field Device the diagnosis is read from.

The MLEN parameter specifies the count of bytes which shall be read as an maximum. The vari-
able given at the DINFO parameter shall be at least of MLEN byte. Possible value range of the
MLEN input is 0 .. 238.

If the diagnosis information is read successfully, the VALID output indicates that the data is
stored in the DINFO parameter. The variable passed to the DINFO parameter shall be of appro-
priate size to receive the diagnosis data. An ARRAY[1..238] OF BYTE can hold the data in all
cases. The LEN output contains the length of the data in byte.

NOTE If the interface to the DP-master can provide the diagnosis information synchronously e.g.
at the time requested, the BUSY output is never seen to be 1, and the other outputs are valid.

If an error occurred, the ERROR output indicates an error and the STATUS output contains the
error code. The STATUS values are defined in table 3.

RDIAG

BOOL --- REQ VALID --- BOOL
DWORD --- ID BUSY --- BOOL

INT --- MLEN ERROR --- BOOL
 STATUS --- DWORD
 LEN --- INT

ANY --- DINFO--- ---DINFO

 FUNCTION_BLOCK RDIAG (* Read diagnosis *)
 VAR_INPUT
 REQ : BOOL; (* Request *)
 ID : DWORD; (* Identifier of a DP-slave *)
 MLEN : INT; (* maximum length to be read *)
 END_VAR

 VAR_OUTPUT
 VALID : BOOL; (* New diagnosis data received and is valid *)
 BUSY : BOOL; (* FB is busy *)
 ERROR : BOOL; (* Error detected *)
 STATUS : DWORD; (* Last detected status *)
 LEN : INT; (* Length of the diagnosis data *)
 END_ VAR

 VAR_IN_OUT

 DINFO : ANY; (* Read diagnosis data *)
 END_VAR

Figure 27 – RDIAG function block

The following state diagram describes the algorithm of the RDIAG function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the RDIAG function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 53 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S4
HAVE_DATA

S5
ERROR

S2
IDLE

T1

S3
WAITING

T2 Invocation [REQ=1]

T4 Neg_response

T6 Invocation

T3 Pos_response

T5 Invocation

Figure 28 – State diagram of RDIAG function block

The following table defines the transitions and actions given in the state diagram above.

Table 17 - Transitions and actions for RDIAG state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 WAITING
Evaluate FB inputs ID. Get diagnosis
GetSlaveDiag.Req with AREP= slave id out of ID

S4 HAVE_DATA Deposit data in parameter LEN and DINFO
S5 ERROR indicate error

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done VALID := 0
LEN, DINFO := Sys-
tem
 null
ERROR, STATUS := 0

T2 S2 S3

Invocation
(Next invocation)

REQ=1 VALID := 0
LEN, DINFO := ---
ERROR, STATUS := --
-

T3 S3 S4

Pos_response
(Positive response from DP-
master interface:
GetSlaveDiag.Cnf(+))

 VALID := 1
LEN, DINFO := New
 data
ERROR, STATUS := 0

© Copyright PNO 2005 - All Rights Reserved Page 54 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T4 S3 S5

Neg_response
(Negative response from
remote communication
partner or other
communication problems
detected:
GetSlaveDiag.Cnf(-) or other
communication problems)

 VALID := 0
LEN, DINFO := ---
ERROR, STATUS :=
 New error code

T5 S4 S2

Invocation
(Next invocation)

 VALID := ---
LEN, DINFO := ---
ERROR, STATUS := --
-

T6 S5 S2

Invocation
(Next invocation)

 VALID := ---
LEN, DINFO := ---
ERROR, STATUS := --
-

--- indicates “unchanged” FB outputs

3.5 Higher Communication Functions

3.5.1 Interlocked Control (ICTRL)

For the purpose to achieve interlocked control including an order from the Host Controller to the
slot or subslot of the Field Device accompanied by a set of data a standard function block can be
used. The following timeline illustrates the sequence of this function.

DP-Master

Request interlocked control
and transfers data
(one data record)

Receives response

Slot of the DP-Slave

Receives request with data
Performs request

Sends response (state and
optionally one data record)

Ready to receive a request again

Time

Figure 29 – Interlocked Control Timeline

The interface of this communication function "Interlocked Control" for a Host Controller uses the
ICTRL function block defined in this clause. When interlocked control is requested the function
block writes a data record to a slot or subslot of a Field Device. The Field Device performs the
request and transfers the state of its execution to the function block. If the request is done and a
result data record is available at the Field Device, the function block reads this data record.

The maximum amount of data for the request and the maximum amount of data which can be
received as a result is one data record.

One instance of a ICTRL function block provides one instance of the PLC function Interlocked
Control. The function is invoked when the REQ input is equal to 1.

The ID parameter identifies the slot of the Field Device the request shall be executed. The
I_REQ input of the ICTRL function block contains an integer which identifies the data record of
the request. The I_RES input of the ICTRL function block contains an integer which identifies the

© Copyright PNO 2005 - All Rights Reserved Page 55 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

data record of the result. This feature is optional: If no result is available or no result data record
shall be transferred, the value –1 shall be given. The R_STATE input of the ICTRL function block
gives the remote state byte in the user data of the slot which will be used to get the state of the
request execution.

The DATA_REQ input of the ICTRL function block contains the data of the request. The first byte
of these data may be used as a method identifier. The first byte shall not have the value 255.

If the function block is called with REQ input = 0 a still executing request is cancelled.

The state of the request execution is given at the STATE output. It contains one of the following
values:

Table 18 – States of interlocked control execution

Value of STATE
output

Meaning

0 NOT_READY: Not ready to receive a new request
1 READY: Ready to receive a new request
2 REQUESTING: Request received and transferring
3 EXECUTING: Request executing
4 READY_WITHOUT_DATA: Request done at Field Device without result data record
5 READY_WITH_DATA: Request done at Field Device, result data record available
6 READING_RESULT: Reading result data record
7 READY: Function block completed
254 ABORTED: Request aborted by Field Device
255 CANCELLED: Request cancelled by function block

The DATA_RES output contains the result data record of the request if a result data record is
available.

© Copyright PNO 2005 - All Rights Reserved Page 56 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

ICTRL

BOOL --- REQ STATE --- BYTE
DWORD --- ID ERROR --- BOOL

INT --- I_REQ STATUS --- DWORD
INT --- I_RES

BYTE --- R_STATE
ANY --- DATA_REQ-- --DATA_REQ
ANY --- DATA_RES-- --DATA_RES

 FUNCTION_BLOCK ICTRL (* Start interlocked control *)
 VAR_INPUT
 REQ : BOOL; (* Request *)
 ID : DWORD; (* Identifier of a slot of a Field Device*)
 I_REQ : INT; (* Index of the data record to request
 interlocked control *)
 I_RES : INT; (* Index of the data record
 for the result *)
 R_STATE : BYTE; (* Remote job state byte out of the
 user data of the slot *)
 END_VAR

 VAR_OUTPUT
 STATE : BYTE; (* State of the execution *)
 ERROR : BOOL; (* Error detected *)
 STATUS : DWORD; (* Last detected status *)
 END_VAR

 VAR_IN_OUT
 DATA_REQ: ANY; (* Data record to request the job *)
 DATA_RES: ANY; (* Data record for the result *)
 END_VAR

 Example:

 VAR JOB1: ICRTL;
 START: BOOL;
 D3S4: DWORD; (* Identifier of the slot *)
 REQ1: ARRAY[1..5] OF BYTE := [1, 4(0)]; (* Request buffer *)
 RSP1: ARRAY[1..3] OF BYTE (* Response buffer *)

 JOB1 (REQ:= START, ID:= D3S4, (* Start interlocked control *)
 I_REQ:= 34, I_RES:= 34, (* Use records #34 for data transfer *)
 R_STATE:= %IB16, (* Use Input byte 16 for state *)
 DATA_REQ:= REQ1, DATA_RES:= RSP1);

Figure 30 – ICTRL function block

The following state diagram in the figure below describes the algorithm of the ICTRL function
block. The following tables describe the transitions of this state diagram and the actions to be
performed within the states and the settings of the ICTRL function block outputs.

One byte of the user input data of the device is used for synchronisation of remote jobs as the
remote job state. It is typically read cyclic by the device FB and given to the FB ICTRL via its in-
put parameter R_STATE.

© Copyright PNO 2005 - All Rights Reserved Page 57 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S2
IDLE

T1

S4 CHECK_R

S3
DP_WRREC

S8 CANCEL

S6 DP_RDREC

S7STORE_DATA

S5
READY

S9
ERROR

T2 Incocation [REQ=1 && R_STATE=1]

T3 [REQ=1 && R_STATE<>1]

T4 [NDR=1 && STATUS<>0]

T5 [REQ=0 || (ERROR=1 && STATUS<>0)]

T6
[R_STATE=3]

T7
 [R_STATE=4]

T8
[R_STATE=5]

T9
[REQ=0]

T10 [R_STATE<>3 || R_STATE<>4 ||R_STATE<>5]

T11 Immediate

T12 [NDR=1 && STATUS=0]

T13
[ERROR=1 && STATUS<>0]

T14 Immediate

T15 Invocation T16 Invocation

Figure 31 – State diagram of ICTRL function block

Table 19 - Transitions and actions for ICTRL state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 DP_WRREC

Request new interlocked control from remote communication partner:
VAR IC1: WRREC;
IC1(
 REQ:= REQ,
 ID:= ID
 INDEX:= I_REQ;
 RECORD:= DATA_REQ)

S4 CHECK_R Check input parameter R_STATE
S5 READY

S6 DP_RDREC

Read result from remote communication partner:
VAR IC2: RDREC;
IC2 (
 REQ:= REQ,

© Copyright PNO 2005 - All Rights Reserved Page 58 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

 ID:= ID
 INDEX:= I_RES);

S7 STORE_DATA Deposit data

S8 CANCEL

Request new interlocked control from remote communication partner:
DATA_REQ [1]:= 16#FF;
IC1(
 REQ:= REQ,
 ID:= ID
 INDEX:= I_REQ;
 RECORD:= DATA_REQ)

S9 ERROR indicate error

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done STATE := R_STATE
ERROR := 0
STATUS := 0
DATA_RES := System
 null

T2 S2 S3

Invocation
(Next invocation)

REQ = 1 and R_STATE = 1
(Ready)

STATE := 2
 (REQUESTING)
ERROR := ---
STATUS := ---
DATA_RES := ---

T3 S2 S9

REQ = 1 and R_STATE <> 1
(READY)

STATE := 0
ERROR := 1
STATUS := Error code
DATA_RES := ---

T4 S3 S4

Positive result of FB WRREC
from remote communication
partner:
NDR=1and STATUS=0

STATE := R_STATE
ERROR := ---
STATUS := ---
DATA_RES := ---

T5 S3 S9

 REQ=0 or
negative result of FB WRREC
from remote communication
partner:
ERROR=1; STATUS<>0

STATE := 0
ERROR := 1
STATUS := Error code
DATA_RES := ---

T6 S4 S4

 Remote job state of input
parameter R_STATE = 3
(EXECUTING)

STATE := R_STATE
ERROR := ---
STATUS := ---
DATA_RES := ---

T7 S4 S5

 Remote job state of input
parameter R_STATE = 4
(READY_WITHOUT_DATA)

STATE := 7 (READY)
ERROR := 0
STATUS := 0
DATA_RES := ---

T8 S4 S6

 Remote job state of input
parameter R_STATE = 5
(READY_WITH_DATA)

STATE := 6
 (READING_RESULT)
ERROR := ---
STATUS := ---
DATA_RES := System
 null

T9 S4 S8

 REQ=0

STATE := 255
 (CANCELLED)
ERROR := ---
STATUS := ---
DATA_RES := ---

T10 S4 S9

 Remote job state of input
parameter R_STATE <> 3, 4
or 5

STATE := 0
ERROR := 1
STATUS := Error code
DATA_RES := ---

© Copyright PNO 2005 - All Rights Reserved Page 59 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T11 S8 S9

Immediate

 STATE := 0
ERROR := 1
STATUS := Error code
DATA_RES := ---

T12 S6 S7

 Positive result of FB RDREC
from remote communication
partner:
NDR=1; STATUS=0 and
result data are ready

STATE := ---
ERROR := ---
STATUS := ---
DATA_RES :=
 IC2.RECORD

T13 S6 S9

 Negative result of FB RDREC
from remote communication
partner:
ERROR=1; STATUS<>0

STATE := 0
ERROR := 1
STATUS := Error code
DATA_RES := ---

T14 S7 S5

Immediate STATE := 7 (READY)
ERROR := 0
STATUS := 0
DATA_RES := ---

T15 S5 S1

Invocation
(next Invocation)

 STATE := 0
ERROR := 0
STATUS := 0
DATA_RES := System
 null

T16 S9 S1

Invocation
(next Invocation)

 STATE := 0
ERROR := 0
STATUS := 0
DATA_RES := System
 null

--- indicates “unchanged” FB outputs

© Copyright PNO 2005 - All Rights Reserved Page 60 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

4 Communication Function Blocks for Supervisor

4.1 General
A PLC may act as a Supervisor.

PLC
as Supervisor

programmed in IEC 61131-3

PLC
as Field Device

programmed in IEC 61131-3

Remote I/O
as Field Device

Field Device

IO Subsystem

PLC
as Host Controller

(programmed in IEC 61131-3)

Figure 32 – Profibus system with a PLC as Supervisor

The following function blocks define the application program interface for a PLC acting as a Su-
pervisor:

• RDIN: Read input data of a Field Device

• RDOUT: Read output data of a Field Device

• RDREC: Read a process data record from a slot of a Field Device

• WRREC: Write a process data record to a slot of a Field Device

• RDIAG: Read diagnosis information from a Field Device

• CNCT: Manage a connection to a Field Device

4.2 Reading IO data object

4.2.1 Read Input Data (RDIN)

The communication function Read Input Data Record for a Supervisor uses the RDIN function
block defined in this clause. One instance of a RDIN function block provides one instance of the
PLC function Read Input Data. The function is invoked when the REQ input is equal to 1.

The ID parameter identifies the slot or subslot of the Field Device the input data is read from.

The MLEN parameter specifies the count of bytes which shall be read as a maximum. The vari-
able given as INPUTS parameter shall be at least of MLEN byte.

If the input data are read successfully, the VALID output indicates that the read data are stored
in the IO output. The LEN output contains the length of the read Input data in byte.

If an error occurred, the ERROR output indicates an error and the STATUS output
contains the error code. The STATUS values are defined in table 3.

© Copyright PNO 2005 - All Rights Reserved Page 61 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

RDIN

BOOL --- REQ VALID --- BOOL
DWORD --- ID BUSY --- BOOL

INT --- MLEN ERROR --- BOOL
 STATUS --- DWORD
 LEN --- INT

ANY --- INPUTS--- ---INPUTS

 FUNCTION_BLOCK RDIN (* Read input data *)
 VAR_INPUT
 REQ : BOOL; (* Request *)
 ID : DWORD; (* Identifier of a slot / subslot of a Field Device *)
 MLEN : INT; (* maximum length to be read *)
 END_VAR

 VAR_OUTPUT
 VALID : BOOL; (* New data received and is valid *)
 BUSY : BOOL; (* FB is busy *)
 ERROR : BOOL; (* Error detected *)
 STATUS : DWORD; (* Last detected status *)
 LEN : INT; (* Length of the read data *)
 END_VAR

 VAR_IN_OUT
 INPUTS : ANY; (* Read input data *)
 END_VAR

Timing Diagram:
 1 2 3

REQ

VALID

BUSY

ERROR

Invocation

Case 1:
The REQ input remains 1 until the function block invocation has completed, it is
reset by the user when VALID gets 1.
Case 2:
The user pulses the REQ input only for one invocation.
Case 3:
Like case 1, but an error occurred.

Figure 33 – RDIN function block

The following state diagram describes the algorithm of the RDIN function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the RDIN function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 62 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1 INIT

S2 IDLE

S3
CONNECTING

S4 CONNECTED

S5 DISCONNECTING

S6 ERROR

T1

T2 Invocation [REQ=1]

T3 Pos_response

T4 Neg_response

T5 [REQ=0]

T6 Error

T7 Pos_response

T8 Neg_response

T9 immediate

Figure 34 – State diagram of RDIN function block

The following table defines the transitions given in the state diagram above.

Table 20 - Transitions and actions for RDIN state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 CONNECTING

Evaluate FB input ID. Request to establish a point-to-point connection to the remote
communication partner:
Connect.Req with
AREP= device id out of ID
AddAddrParam.D-Len= D_LEN out of D_ADDR
AddAddrParam.D-Addr.D-NetworkAddress = D

S4 CONNECTED No actions

S5 DISCONNECTING

Evaluate FB input ID. Request to close the connection to the remote communication
partner:
Disconnect.Req with
AREP= device id out of ID

S6 ERROR indicate error

© Copyright PNO 2005 - All Rights Reserved Page 63 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done VALID := 0
BUSY := 0
ERROR := 0
STATUS := 0

T2 S2 S3

Invocation
(Next invocation)

REQ=1 VALID := 0
BUSY := 1
ERROR := 0
STATUS := -1

T3 S3 S4

Pos_response
(Positive response from
remote communication
partner:
Connect.Cnf(+)for
PROFIBUS DP and for
PROFINET IO)

 VALID := 1
BUSY := 0
ERROR := 0
STATUS := 0

T4 S3 S6

Neg_response
(Negative response from
remote communication
partner or other communi-
cation problems detected:
Connect.Cnf(-)for
PROFIBUS DP and for
PROFINET IO or Abort.Ind
or local problems)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := New error
 code

T5 S4 S5

 REQ=0 VALID := 0
BUSY := 1
ERROR := 0
STATUS := 0

T6 S4 S6

Error
(Communication problems
detected, connection
aborted:
Abort.Ind or local problems)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := New error
 code

T7 S5 S2

Pos_response
(Positive response from
remote communication
partner:
Disconnect.Cnf(+) for
PROFIBUS DP or Re-
lease.Cnf(+) for PROFINET
IO)

 VALID := ---
BUSY := ---
ERROR := ---
STATUS := ---

T8 S5 S6

Neg_response
(Negative response from
remote communication
partner or other communi-
cation problems detected:
Disconnect.Cnf(-) for
PROFIBUS DP or Re-
lease.Cnf(+) for PROFINET
IO or Abort.Ind or local
problems)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := New error
 code

T9 S6 S2 Immediate
--- indicates “unchanged” FB outputs

4.2.2 Read Output Data (RDOUT)

The communication function Read Output Data for a Supervisor uses the RDOUT function block
defined in this clause. One instance of a RDOUT function block provides one instance of the PLC
function Read Output Data. The function is invoked when the REQ input is equal to 1.

The ID parameter identifies the slot of the Field Device the output data is read from.

© Copyright PNO 2005 - All Rights Reserved Page 64 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

The MLEN parameter specifies the count of bytes which shall be read as an maximum. The byte
array given as OUTPUTS parameter shall be at least of MLEN byte.

If the output data are read successfully, the VALID output indicates that the read data are stored
in the OUTPUTS parameter. The variable passed to the OUTPUTS parameter shall be of appro-
priate size to receive the output data. The LEN output contains the length of the read Output
data in byte.

If an error occurred, the ERROR output indicates an error and the STATUS output contains the
error code. The STATUS values are defined in Table 2.

 RDOUT

BOOL --- REQ VALID --- BOOL
DWORD --- ID BUDY --- BOOL

INT --- MLEN ERROR --- BOOL
 STATUS --- DWORD
 LEN --- INT

ANY --- OUTPUTS-- --OUTPUTS

FUNCTION_BLOCK RDOUTIN (* Read output data *)
 VAR_INPUT
 REQ : BOOL; (* Request *)
 ID : DWORD; (* Identifier of a slot of a DP-slave *)
 MLEN : INT; (* maximum length to be read *)
 END_VAR

 VAR_OUTPUT
 VALID : BOOL; (* New data received and is valid *)
 BUSY : BOOL; (* FB is busy *)
 ERROR : BOOL; (* Error detected *)
 STATUS : DWORD; (* Last detected status *)
 LEN : INT; (* Length of the read data *)
 END_VAR

 VAR_IN_OUT
 OUTPUTS : ANY; (* Read output data *)
 END_VAR

Timing Diagram
 1 2 3

REQ

VALID

BUSY

ERROR

Invocation

Case 1: The REQ input remains 1 until the function block invocation has

completed, it is reset by the user when VALID gets 1.
Case 2: The user pulses the REQ input only for one invocation.
Case 3: Like case 1, but an error occurred.

Figure 35 – RDOUT function block

© Copyright PNO 2005 - All Rights Reserved Page 65 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

The following state diagram describes the algorithm of the RDOUT function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the RDOUT function block outputs.

S1
INIT

S4
HAVE_DATA

S5
ERROR

S2
IDLE

T1

S3 WAITING

T2 Invocation [REQ=1]

T6 Immediate

T3 Pos_response

T5 Immediate

T4 Neg_response

Figure 36 – State diagram of RDOUT function block

The following table defines the transitions and actions given in the state diagram above.

Table 21 - Transitions and actions for RDOUT state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 WAITING
Evaluate FB input ID. Request variables from remote communication partner:
ReadOutput.Req with AREP= device id out of ID

S4 HAVE_DATA Deposit data in parameter LEN and IO
S5 ERROR indicate error

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done VALID := 0
BUSY := 0
ERROR := 0
STATUS := 0
IO, LEN := System null

T2 S2 S3

Invocation
(Next invocation)

REQ=1 VALID := 0
BUSY := 1
ERROR := 0
STATUS := -1
IO, LEN := ---

T3 S3 S4

Pos_response
(Positive response from
remote communication
partner:
ReadOutput.Cnf(+))

 VALID := 1
BUSY := 0
ERROR := 0
STATUS := 0
IO, LEN := New data

© Copyright PNO 2005 - All Rights Reserved Page 66 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T4 S3 S5

Neg_response
(Negative response from
remote communication
partner or other
communication problems
detected:
ReadOutput.Cnf(-) or
Abort.Ind or local problems)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := New error
 code
IO, LEN := ---

T5 S4 S2

Immediate VALID := ---
BUSY := ---
ERROR := ---
STATUS := ---
IO, LEN := ---

T6 S5 S2

 VALID := ---
BUSY := ---
ERROR := ---
STATUS := ---
IO, LEN := ---

--- indicates “unchanged” FB outputs

Immediate

4.3 Exchange of Process Data Records
The function blocks RDREC and WRREC defined in the previous chapters are defined for a PLC
acting as a Host Controller (Class 1). These function blocks can also be used for communication
as a Supervisor.

4.4 Diagnosis

4.4.1 Read Diagnosis (RDIAG)

This function is provided only for PROFIBUS DP because the service used for the function block
is not provided by PROFINET IO. Diagnosis is realized using the alarm services and data re-
cords.

The communication function Read Diagnosis for a DP-master (Class 2) uses the RDIAG function
block as defined in clause 3.4.3. One instance of a RDIAG function block provides one instance
of the PLC function Read Diagnosis.

The ID parameter identifies the slot of the Field Device the diagnosis is read from. A Connection
to this Field Device shall be established before.

The following table defines the transitions given in the state diagram defined in clause 3.4.3, if
this Communication Function Block is acting in the context of a Supervisor.

Table 22 - Transitions and actions for RDIAG state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 WAITING
Evaluate FB inputs ID. Get diagnosis
ReadSlaveDiag.Req with AREP= slave id out of ID

S4 HAVE_DATA Deposit data in parameter LEN and DINFO
S5 ERROR indicate error

© Copyright PNO 2005 - All Rights Reserved Page 67 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation
done

VALID := 0
LEN, DINFO := System
 null
ERROR, STATUS := 0

T2 S2 S3
Invocation
(Next invocation)

REQ=1 VALID := 0
LEN, DINFO := ---
ERROR, STATUS := ---

T3 S3 S4

Pos_response
(Positive response from DP-
master interface:
ReadSlaveDiag.Cnf(+))

 VALID := 1
LEN, DINFO := New
 data
ERROR, STATUS := 0

T4 S3 S5

Neg_response
(Negative response from
remote communication
partner or other
communication problems
detected:
ReadSlaveDiag.Cnf(-) or
other communication
problems)

 VALID := 0
LEN, DINFO := ---
ERROR, STATUS :=
 New error code

T5 S4 S2
Invocation
(Next invocation)

 VALID := ---
LEN, DINFO := ---
ERROR, STATUS := ---

T6 S5 S2
Invocation
(Next invocation)

 VALID := ---
LEN, DINFO := ---
ERROR, STATUS := ---

--- indicates “unchanged” FB outputs

4.5 Connection Management (CNCT)
Supervisors need connections to access a Field Device.

NOTE A PLC system may manage connections by local means. In this case the following function
blocks for the connection management have no functionality and always indicate success.

The communication function Connection Management for a Supervisor uses the CNCT function
block defined in this clause. One instance of a CNCT function block provides one instance of the
PLC function Connection Management. A connection shall be established to a Field Device
which is connected to an IO system. The function is invoked when the REQ input is equal to 1.

The variable given D_ADDR input shall identify the destination Field Device. The ID parameter
identifies the Field Device the connection shall be established to.

NOTE The structure D_ADDR is changed compared with the version 1.20 of this document.

The variable at the D_ADDR input shall be structured as defined in the following tables depend-
ing on the used IO Subsystem:

© Copyright PNO 2005 - All Rights Reserved Page 68 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Table 23 - Structure of the variable at D_ADDR input for PROFIBUS DP

Component name Data type Meaning

D_TYPE BYTE = 1: PROFIBUS DP

D_LEN BYTE length of the substructure D

D STRUCT Destination address of the Field Device

API BYTE AP

SCL BYTE Access level

N_ADDR ARRAY [1..6]
OF BYTE

only if D_TYPE=1: Network address

MAC ARRAY [1..x]
OF BYTE

only if D_TYPE=1: MAC address
where x = D_LEN-8

 END_STRUCT

SLOT BYTE Slot identification

Table 24 - Structure of the variable at D_ADDR input for PROFINET IO

Component name Data type Meaning

D_TYPE BYTE = 2: PROFINET IO

D_VERSION BYTE = 1: first version of D structure

D STRUCT Destination address of the Field Device

STATIONNAME STRING Station name

INSTANCE WORD Instance ID

DEVICE WORD Device ID

VENDOR WORD Vendor ID

 END_STRUCT

API DWORD Application Process Identifier

SLOT WORD Slot Number (identification of the slot)

SUBSLOT WORD Subslot Number (identification of the subslot)

If the station name is given the IP address is don't care.

NOTE A length parameter is not given for the D structure for PROFINET IO because the lengths may
differ because of different alignment rules.

The connection is a peer-to-peer connection. One PLC can only establish one connection to the
same Field Device.

NOTE The CNCT function block defines a connection to a slot or subslot of a Field Device and returns
a handle via the ID output. This connection establishes an Application Relationship (AR) to the Field
Device. If another connection and handle is needed to the same Field Device the existing AR may be
used.

If the connection is established successfully, the VALID output indicates that the connection can
be used.

The connection remains connected as long as the function block is called with REQ=0 or an error
is indicated. If a connection is established and the function block is called with REQ input = 0 the
connection is disconnected.

© Copyright PNO 2005 - All Rights Reserved Page 69 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

If an error occurred, the ERROR output indicates an error and the STATUS output contains the
error code. The STATUS values are defined in table 3.

 CNCT

BOOL --- REQ VALID --- BOOL
ANY --- D_ADDR BUSY --- BOOL

DWORD --- ID ERROR --- BOOL
 STATUS --- DWORD

 FUNCTION_BLOCK CNCT (* Connection Management *)
 VAR_INPUT
 REQ : BOOL; (* Request *)
 D_ADDR : ANY; (* Address info of a slot/subslot of the station *)
 ID : DWORD; (* Identifier of a Field Device*)
 END_VAR

 VAR_OUTPUT
 VALID : BOOL; (* Connection is valid *)
 ERROR : BOOL; (* Error detected *)
 BUSY : BOOL; (* FB is busy *)
 STATUS : DWORD; (* Last detected status *)
 END_VAR

Timing Diagram:
 1 2 3

REQ

VALID

BUSY

ERROR

Invocation

Case 1:
 The REQ input remains 1 until the connection is used,
 it is reset by the user when the connection shall be disconnected.
Case 2:
 The user aborts the establishment of a connection.
Case 3:
 Like case 1, but an error occurred.

Figure 37 – CNCT function block

The following state diagram describes the algorithm of the CNCT function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the CNCT function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 70 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1 INIT

S2 IDLE

S3 CONNECTING

S4 CONNECTED

S5 DISCONNECTING

S6 ERROR

T1

T2 Invocation [REQ=1]

T3 Pos_response

T4 Neg_response

T5 [REQ=0]

T6 Error

T7 Pos_response

T8 Neg_response

T9 immediate

Figure 38 – State diagram of CNCT function block

The following table defines the transitions and actions given in the state diagram above.

Table 25 - Transitions and actions for CNCT state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 CONNECTING

Evaluate FB input ID. Request to establish a point-to-point connection to the remote
communication partner:
Connect.Req with
AREP= device id out of ID
AddAddrParam.D-Len= D_LEN out of D_ADDR
AddAddrParam.D-Addr.D-NetworkAddress = D

S4 CONNECTED No actions

S5 DISCONNECTING

Evaluate FB input ID. Request to close the connection to the remote communication
partner:
Disconnect.Req with
AREP= device id out of ID

S6 ERROR indicate error

© Copyright PNO 2005 - All Rights Reserved Page 71 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done VALID := 0
BUSY := 0
ERROR := 0
STATUS := 0

T2 S2 S3

Invocation
(Next invocation)

REQ=1 VALID := 0
BUSY := 1
ERROR := 0
STATUS := -1

T3 S3 S4

Pos_response
(Positive response from
remote communication
partner:
Connect.Cnf(+)for
PROFIBUS DP and for
PROFINET IO)

 VALID := 1
BUSY := 0
ERROR := 0
STATUS := 0

T4 S3 S6

Neg_response
(Negative response from
remote communication
partner or other communi-
cation problems detected:
Connect.Cnf(-)for
PROFIBUS DP and for
PROFINET IO or Abort.Ind
or local problems)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := New error
 code

T5 S4 S5

 REQ=0 VALID := 0
BUSY := 1
ERROR := 0
STATUS := 0

T6 S4 S6

Error
(Communication problems
detected, connection
aborted:
Abort.Ind or local problems)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := New error
 code

T7 S5 S2

Pos_response
(Positive response from
remote communication
partner:
Disconnect.Cnf(+) for
PROFIBUS DP or Re-
lease.Cnf(+) for PROFINET
IO)

 VALID := ---
BUSY := ---
ERROR := ---
STATUS := ---

T8 S5 S6

Neg_response
(Negative response from
remote communication
partner or other communi-
cation problems detected:
Disconnect.Cnf(-) for
PROFIBUS DP or Re-
lease.Cnf(+) for PROFINET
IO or Abort.Ind or local
problems)

 VALID := 0
BUSY := 0
ERROR := 1
STATUS := New error
 code

T9 S6 S2 Immediate
--- indicates “unchanged” FB outputs

© Copyright PNO 2005 - All Rights Reserved Page 72 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

5 Communication Function Blocks for Field Devices

5.1 Model of a PLC as a Field Device
The Communication Function Blocks defined in the previous clauses are defined for PLC which
is acting as a Host Controller or as a Supervisor. A PLC may also be used acting as Field De-
vice. The following Communication Function Blocks define the application interface when the
PLC is acting as a Field Device.

PLC
as Supervisor

(programmed in IEC 61131-3)

PLC
as Field Device

programmed in IEC 61131-3

Remote I/O
as Field Device

IO Subsystem

PLC
as Host Controller

(programmed in IEC 61131-3)

Field Device

Figure 39 – Profibus system with a PLC as Field Device

A PLC as a Field Device may contain process control functions for one (or for more than one)
parts of a plant or machinery. Each of these process control functions are typically implemented
by function block instances or function calls using the programming languages of IEC 61131-3.
In a Field Device one process control function shall be modelled as one (or more than one) slot
or subslot.

It shall be possible, that the application program parts which implement one process control
function are programmed independently from each other and from other program parts, e.g. one
process control function only knows which slots or subslot it uses, and there shall be no knowl-
edge necessary which slots / subslots are used by other process control functions. The function
blocks defined as an application interface for Field Device in this chapter shall support this.

The application program interface to the IO system are Communication Function Blocks. The fol-
lowing function blocks provide this application program interface:

• RCVCO: Receives the (cyclic) output data of a Host Controller

• SBCCI: Subscribe (cyclic) input data of another Field Device

• PRVCI: Provides (publishes) the (cyclic) input data of the Field Device

• RCVREC: Receives a process data record from a Host Controller or a Supervisor

• PRVREC: Receives a request and provides a process data record to a Host Control-
ler or a Supervisor

• SALRM: Request to send an alarm from the Field Device to the Host Controller

• SDIAG: Request to send diagnosis from a DP-slave to a DP-Master

© Copyright PNO 2005 - All Rights Reserved Page 73 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

5.2 IO Data Object Interface

5.2.1 General

The output data of a Host Controller to a Field Device are received by a RCVCO function block
or may be mapped into the %I area of the application program of the Field Device, e.g. these
Host Controller outputs are treated as inputs of the Field Device PLC.

The input data of a Host Controller from this Field Device are provided by a PRVCI function
block or may be mapped into the %Q area of the application program of the Field Device, e.g.
these Host Controller inputs are treated as outputs of the Field Device PLC.

Output data of another (publishing) Field Device to this Field Device may be subscribed and are
received by a SBCCI function block or may be mapped into the %I area of the application pro-
gram of the subscribing Field Device, e.g. outputs of a publishing Field Device are treated as
inputs of the Field Device PLC.

Field Device
Application Pro-

gram

Field
Device
interface

Field
Device
Inputs

Field
Device
Outputs

%I

PBLCI
Provide IO data

object

RCVCO
Receive IO
data object

%Q

 from FB SETIO as outputs
 from the Host Controller

to FB GETIO as inputs
to the Host Controller

%Q

%I
%I

SBCCI
Subscribe I/O

 subscribed from
 another Field Device

Figure 40 – PLC as a Field Device Using IO data object

Enabling a Communication Function Block for receiving, subscribing and providing IO data object
means, that the IO data object are transferred to or from the Field Device interface to the appli-
cation program of the Field Device CPU. The RCVCO function block gets the output data of the
addressed slot from the Host Controller out of the input data interface of the Field Device. The
SBCCI function block subscribes and gets input data of the addressed Field Device from the data
interface of the other Field Device. The PRVCI function block provides the data of a slot or sub-
slot to the output data interface of the Field Device to the Host Controller as inputs.

NOTE The same output data of the Field Device CPU should not be written by different function block
instances or be written via the %Q interface, because which values are transferred to the slave may be
unpredictable.

© Copyright PNO 2005 - All Rights Reserved Page 74 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

5.2.2 Receive Cyclic Output Data (RCVCO)

The communication function Receive Cyclic Output Data for a Field Device uses the RCVCO
function block defined in this clause. One instance of a RCVCO function block provides one in-
stance of the PLC function Receive Cyclic Output Data. The function is invoked by a 1 at the EN
input.

The ID parameter identifies the slot of the Field Device the output data shall be received. The
data are given by the Host Controller as its cyclic output data for this Field Device.

If the data are received successfully, the ENO output is set to 1 and the received IO data object
are stored in the variable at the IO parameter. The variable passed to the IO parameter shall be
of appropriate size to receive the diagnosis data. The LEN output contains the length of the re-
ceived IO data object in byte.

If an error occurred, the ENO output is set to 0 and the STATUS output contains the error code.
The STATUS values are defined in Table 2.

RCVCO

BOOL --- EN ENO --- BOOL
DWORD --- ID STATUS --- DWORD

 LEN --- INT
ANY --- IO------ ------IO

 FUNCTION_BLOCK RCVCO (* Receive Cyclic Output data *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 ID : DWORD ; (* Identification of a slot / subslot
 of the Field Device *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Flag *)
 STATUS : DWORD; (* Last detected status *)
 LEN : INT; (* Length of the received input data *)
 END_VAR

 VAR_IN_OUT
 IO : ANY; (* Received IO data object *)
 END_VAR

Example:

 VAR RECEIV1: RCVCO;
 D3S4: DWORD;
 BUFFER16: ARRAY [1..16] OF BYTE;

 RECEIV1 (ID:=D3S4, IO:= BUFFER16);

The call RECEIV1 receives 16 bytes of the output data of the Host Controller which belongs to the slot (or
subslot) of the Field Device identified by the D3S4 handle. The data are transferred to the variable
BUFFER16, the count of the received bytes is in output LEN.

Figure 41 – RCVCO function block

NOTE The EN and ENO parameters are optional and may be omitted when calling an instance of the func-
tion block in textual languages.

The following state diagram describes the algorithm of the RCVCO function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the RCVCO function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 75 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S4
HAVE_DATA

S5
ERROR

S2
IDLE

T1

T2 Invocation [EN=1]

T3 ValidData

T5 Immediate
T6 Immediate

S3 RECEIVING

T4 Error

Figure 42 – State diagram of RCVCO function block

The following table defines the transitions and actions given in the state diagram above.

Table 26 – Transitions and actions for RCVCO state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 RECEIVING Evaluate FB input SLOT. Get IO data object for slot from DP-slave interface
S4 HAVE_ DATA Deposit received IO data object of the slot in IO output and set LEN output

S5 ERROR
indicate error
set FB outputs

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2
Initialisation done EN0 := 0

STATUS := 0
IO, LEN := 0

T2 S2 S3
Invocation
(Next invocation)

EN=1 EN0 := ---
STATUS := ---
IO, LEN := ---

T3 S3 S4

ValidData
(Next invocation of this
instance and valid IO data
object)

 EN0 := 1
STATUS := 0
IO, LEN := New data

T4 S3 S5

Error
(Next invocation of this
instance and no valid IO data
object)

 EN0 := 0
STATUS := New error
 code
IO, LEN := ---

T5 S4 S2
Immediate EN0 := ---

STATUS := ---
IO, LEN := ---

© Copyright PNO 2005 - All Rights Reserved Page 76 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T6 S5 S2
Immediate EN0 := ---

STATUS := ---
IO, LEN := ---

--- indicates “unchanged” FB outputs

5.2.3 Subscribe Cyclic Input Data (SBCCI)

The communication function Subscribe Cyclic Input Data for a Field Device uses
the SBCCI function block defined in this clause. One instance of a SBCCI function block provides
one instance of the PLC function Subscribe Cyclic Input Data. The function is invoked by a 1 of
the EN input.

This Communication Function Block subscribes and gets the input data of the slot of the Field
Device identified with the ID input. The OFFSET and LEN inputs specify the data area inside the
cyclic input data the other Field Device sends to the Host Controller and are subscribed by this
Field Device using the SBCCI function block. The OFFSET input counts from 0.

If the data are received successfully, the ENO output is set to 1 and the subscribed IO data ob-
ject are stored in the variable given at the IO parameter. The variable passed to the IO parame-
ter shall be of appropriate size to receive the data.

If an error occurred, the ENO output is set to 0 and the STATUS output contains the error code.
The STATUS values are defined in table 3.

SBCCI

BOOL --- EN ENO --- BOOL
DWORD --- ID STATUS --- DWORD

INT --- OFFSET
INT --- LEN
ANY --- IO------ ------IO

 VAR_IN_OUT
 IO : ANY; (* Subscribed IO data object *)
 END_VAR

Example:

 VAR SUBSCR1: SBCCI;
 D1S2 : DWORD;
 BUFFER1: ARRAY [1..6] OF BYTE;

 SUBSCR1 (ID:=D1S2, IO:= BUFFER1);

The call SUBSCR1 subscribes the published output data of the Field Device identified with the D1S2 han-
dle. The published data are transferred to the variable BUFFER1.

 FUNCTION_BLOCK SBCCI (* Subscribe Cyclic Input data *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 ID : DWORD; (* Identification of the Field Device *)
 OFFSET : INT; (* Offset of the area subscribed *)
 LEN : INT; (* Length of the subscribed data *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Flag *)
 STATUS : DWORD; (* Last detected status *)
 END_VAR

Figure 43 – SBCCI function block

© Copyright PNO 2005 - All Rights Reserved Page 77 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

NOTE The EN and ENO parameters are optional and may be omitted when calling an instance of the func-
tion block in textual languages.

The following state diagram describes the algorithm of the SBCCI function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the SBCCI function block outputs.

S1
INIT

S4
HAVE_DATA

S5
ERROR

S2
IDLE

T1

T2 Invocation [EN=1]

T3 ValidData

T5 Immediate
T6 Immediate

S3 RECEIVING

T4 Error

Figure 44 – State diagram of SBCCI function block

The following table defines the transitions and actions given in the state diagram above.

Table 27 - Transitions and actions for SBCCI state diagram

STATE NAME STATE DESCRIPTION

cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 RECEIVING Evaluate FB input ID. Get subscribed IO data object from DPSlave interface
S4 HAVE_ DATA Deposit received IO data object of the publisher in IO parameter, set LEN output

S5 ERROR
indicate error
set FB outputs

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2
Initialisation done EN0 := 0

STATUS := 0
IO := System null

T2 S2 S3
Invocation
(Next invocation)

EN=1 EN0 := ---
STATUS := ---
IO := ---

T3 S3 S4
ValidData
(Valid IO data object)

 EN0 := 1
STATUS := 0
IO := New data

S1 INIT

© Copyright PNO 2005 - All Rights Reserved Page 78 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T4 S3 S5

Error
(No valid IO data object)

 EN0 := 0
STATUS := New error
 code
IO := ---

T5 S4 S2
Immediate EN0 := ---

STATUS := ---
IO := ---

T6 S5 S2
Immediate EN0 := ---

STATUS := ---
IO := ---

--- indicates “unchanged” FB outputs

5.2.4 Provide Cyclic Input Data (PRVCI)

The communication function Provide Cyclic Input Data of a Field Device uses the PRVCI function
block defined in this clause. One instance of a PRVCI function block provides one instance of the
PLC function Provide Cyclic Data. The function is invoked by a 1 of the EN input.

The ID parameter identifies the slot of the slave the IO data object is provided for. The variable
given at the IO input shall contain the IO data object that shall be provided as the input data of
the slot of the Field Device to the Host Controller. The variable passed to the IO parameter shall
be of appropriate size to contain the output data. The LEN input contains the length of the IO
data in byte.

If the LEN input is set to 0, no valid data are available. For PROFINET IO the IOPS shall be set
to bad data detected by subslot.

If the IO data object are provides successfully, the ENO output is set to 1.

If an error occurred, the ENO output is set to 0 and the STATUS output contains the error code.
The STATUS values are defined in T . able 2

PRVCI

EN ENO --- BOOL
DWORD --- ID STATUS --- DWORD

INT --- LEN
ANY --- IO--------- -------IO

FUNCTION_BLOCK PRVCI (* Provide Cyclic Input data *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 ID : INT; (* Identifier of a slot/subslot of the Field Device *)
 LEN : INT; (* Length of the IO data object *)
END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Flag *)
 STATUS : DWORD; (* Last detected status *)
 END_VAR

 VAR_IN_OUT
 IO : ANY; (* IO data object to provide *)
 END_VAR

BOOL ---

Figure 45 – PRVCI function block

NOTE The EN and ENO parameters are optional and may be omitted when calling an instance of the func-
tion block in textual languages.

© Copyright PNO 2005 - All Rights Reserved Page 79 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

The following state diagram describes the algorithm of the PRVCI function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the PRVCI function block outputs.

S1
INIT

S4
DONE

S5
ERROR

S2
IDLE

T1

T2 Invocation [EN=1]

T3 NoError

T5 Immediate
T6 Immediate

S3 PROVIDING

T4 Error

Figure 4 – State diagram of PRVCI function block 6

Table 28 - Transitions and actions for PRVCI state diagram

STATE NAME

The following table defines the transitions and actions given in the state diagram above.

STATE DESCRIPTION

cold start state,
initialise outputs
idle state,
No actions

S3 PROVIDING Evaluate FB input ID. Transfer IO data object to DP-slave interface as output data of the
slot

S4 DONE No actions
S5 ERROR indicate error

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2
Initialisation done EN0 := 0

STATUS := 0

T2 S2
EN=1

S3
Invocation
(Next invocation)

EN0 := ---
STATUS := ---

T3 S3 S4
NoError
(No communication problems
detected)

 EN0 := 1
STATUS := 0

S5
Error
(Communication problems
detected)

 EN0 := 0
STATUS := New error
 code

T5 S4 S2
Invocation
(Next invocation)

 EN0 := ---
STATUS := ---

S1 INIT

S2 IDLE

T4 S3

© Copyright PNO 2005 - All Rights Reserved Page 80 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T6 S5

S2
Invocation
(Next invocation)

EN0 := ---
STATUS := ---

--- indicates “unchanged” FB outputs

5.3 Process Data Record Interface

5.3.1 General

A Field Device can receive a process data record from a Host Controller or a Supervisor. The
Host Controller or Supervisor may use (if its a PLC) the WRREC function block. The PLC appli-
cation program is informed about this using the RCVREC function block and can process the
process data record.

A Field Device can receive a request to provide a process data record to a Host Controller or
Supervisor. The Host Controller or Supervisor may use (if its a PLC) the RDREC function block.
The PLC application program is informed about this request and can provide the requested proc-
ess data record using the PRVREC function block.

5.3.2 Receive Process Data Record (RCVREC)

The communication function Receive Process Data Record for a Field Device uses the RCVREC
function block defined in this clause. One instance of a RCVREC function block provides one in-
stance of the PLC function Receive Process Data Record.

The function is invoked by EN=1. The MODE input controls the functionality of the RCVREC
function block.

MODE Meaning

0 Check for request:
If the Field Device interface has received a process data record, only the outputs NEW, SLOT,
INDEX and RLEN are set. Multiple calls of this function block with MODE=0 returns the outputs
for the same request.

1 Receive all process data records:
If the Field Device interface has received a process data record, the function block outputs are
updated and the data record is transferred to the RECORD parameter. The service is re-
sponded positively.

2 Receive process data records for one slot or subslot:
If the Field Device interface has received a process data record for the slot or subslot the num-
bers of which are given in input F_ID, the function block outputs are updated and the data re-
cord is transferred to the RECORD parameter. The service is responded positively.

4 Negative response:
After checking the request to receive a process data record, this function block refuses to ac-
cept this record and sends a negative response to the Host Controller. The error reason is
given with the inputs CODE1 and CODE2.

NOTE 1 This function blocks contains the methods to check, receive and acknowledge a process data
record. All aspects of receiving a process data record may use one function block instance, the differ-
ent methods are distinguished using the MODE input.

For PROFIBUS DP the subslot number shall always contain 0.

The MLEN parameter specifies the count of bytes which shall be received as a maximum. The
byte array given as RECORD parameter shall be at least of MLEN byte.

NOTE 2 An array declaration with zero elements is not supported in IEC 61131-3, therefore the mini-
mum length shall be 1 byte even if the record length is zero. The actual length is given with the LEN
parameter.

© Copyright PNO 2005 - All Rights Reserved Page 81 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

If a data record is received (with MODE=1 or MODE=2), the NEW output indicates that the data
record is stored in the variable given at the RECORD parameter. The variable passed to the
RECORD parameter shall be of appropriate size to receive the process data record. The LEN
output contains the length of the data record in byte.

If the function block refuses to accept the data record, the CODE1 input sets the Error Code 1,
and the CODE2 input sets the Error Code 2 of the negative response.

NOTE 3 The application program of the Field Device shall acknowledge the received request, other-
wise the Host Controller will get a timeout error and will deactivate the DP interface of the Field Device.

able 2
If an error occurred, the ENO=0 indicates an error and the STATUS output contains the error
code. The STATUS values are defined in T .

RCVREC

BOOL --- EN ENO --- BOOL
INT --- MODE NEW --- BOOL

DWORD --- F_ID STATUS --- DWORD
INT --- MLEN SLOT --- INT

BYTE --- CODE1 SUBSLOT --- INT
BYTE --- CODE2 INDEX --- INT

 LEN --- INT
ANY --- RECORD-- --RECORD

 FUNCTION_BLOCK RCVREC (* Receive process data record *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 MODE : INT; (* Function specifier *)
 F_ID : DWORD; (* Slot / subslot to filter *)
 (* the process data records to receive *)
 MLEN : INT; (* Maximum length of a data record to receive *)
 CODE1 : BYTE; (* Reason for negative response *)
 CODE2 : BYTE; (* Reason for negative response *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Function enabled *)
 NEW : BOOL; (* New data record received *)
 STATUS : DWORD; (* Field Device interface status *)
 SLOT : INT; (* Slot the record is received for *)
 SUBSLOT : INT; (* Subslot the record is received for *)
 INDEX : BOOL; (* Index of the received process data record *)
 LEN : INT; (* Length of the received data record *)

 VAR_IN_OUT
 RECORD : ANY; (* Received data record *)
 END_VAR

 END_VAR

© Copyright PNO 2005 - All Rights Reserved Page 82 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Example 1: Receive a process data record for all slots / subslots of the Field Device

VAR R1: ARRAY [1..240] OF BYTE;
 RREC1: RCVREC;

RREC1 (MODE:=1, MLEN:=240, RECORD:=R1);
IF NEW=1 THEN (* process record, the index is in RREC1.INDEX *)

 RREC2: RCVREC;

..

Example 2: Check the received process data records, process and acknowledge conditionally

VAR R2: ARRAY [1..240] OF BYTE;

RREC2 (MODE:=0); (* Check for a new record *)
IF NEW=1 THEN (* new process data record available *)
 IF RREC2.SLOT=12 and RREC2.INDEX=1 THEN
 RREC2 (MODE:=1, RECORD:=R2); (* get this record *)
 (* process data record for slot 12 and index 1 *)
 ELSEIF RREC2.SLOT=13 and RREC2.INDEX=2 THEN
 RREC2 (MODE:=1, RECORD:=R2); (* get this record *)
 (* process data record for slot 13 and index 2 *)
 :
 ELSE RREC2 (MODE:=4); (* give negative response *)
 END_IF;

Figure 4 – RCVREC function block 7

The following state diagram describes the algorithm of the RCVREC function block. The following
tables describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the RCVREC function block outputs.

NOTE The EN and ENO parameters are optional and may be omitted when calling an instance of the func-
tion block in textual languages.

© Copyright PNO 2005 - All Rights Reserved Page 83 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S7
POS_RESP

S9
ERROR

S2 IDLE S4NEG_RESP

S3
ENABLED

S5 RECEIVED

S6
CHECK

T1

A

S8NEG_RESP

T2
Invocation [EN=1]

T3 Indication

T7 Indication [MODE=1 || (MODE=2 && FSLOT=ProcessData.Read.Ind.SlotNumber)]

T5 Unresp [MODE=0]

T8
Unresp [MODE=4]

T4 Immediate

T6 Immediate

T13 Error

T11 Immediate T12 Immediate

T9 Unresp [MODE=3]

T10 Immediate

Figure 4 – State diagram of RCVREC function block 8

The following table defines the transitions and actions given in the state diagram above.

The ERROR state may be entered by the states ENABLED, CHECK, RECEIVED, POS_ACK or
NEG_ACK if a communication error is detected.

Table 29 - Transitions and actions for RCVREC state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 ENABLE No actions

S4 / S8 NEG_ACK

Negative response to DP-Master:
ProcessData.Write.rsp(-)with
Error Decode= 16#80
Error Code 1= CODE1
Error Code 2= CODE2

S5 RECEIVED Deposit data in parameter SLOT, INDEX, LEN and RECORD
S6 CHECK Update outputs

S7 POS_ACK
Positive response to DP-Master:
ProcessData.Write.rsp(+) with
Length= MIN(MLEN,LEN)

S8 ERROR indicate error

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

© Copyright PNO 2005 - All Rights Reserved Page 84 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T1 S1 S2

Initialisation
done

ENO := 0
NEW := 0
SLOT, INDEX, LEN :=
 System null
RECORD := ---
STATUS := 0

T2 S2

ENO := 1

RECORD := ---
S3

Invocation
(Next invocation)

EN=1
NEW := 0
SLOT, INDEX, LEN := 0

STATUS := ---

T3 S2 S4

Unack_ind
(Unacknowledged indication
from Host Controller or Su-
pervisor:
ProcessData.Write.Ind for
PROFIBUS DP or Write.Ind
for PROFINET IO)

 ENO := 1
NEW := 0
SLOT, SUBSLOT,
INDEX, LEN := ---
RECORD := ---
STATUS := ---

T4 S4 S2

Immediate

RECORD := ---

ENO := 1
NEW := 0
SLOT, SUBSLOT,
INDEX, LEN := ---

STATUS := ---

T5 S3 S6

Unack_ind
(Unacknowledged indication
from DP-master (Class 1) or
(Class 2))

MODE=0 ENO :=
NEW :=
SLOT, SUBSLOT,
INDEX, LEN :=
 New data
RECORD := ---
STATUS := ---

T6 S6 S2

NEW := 0
Immediate ENO := 1

SLOT, SUBSLOT,
INDEX, LEN := ---
RECORD := ---
STATUS := ---

T7 S3 S5

Indication
(Indication from Host Control-
ler or Supervisor:
ProcessData.Write.Ind for
PROFIBUS DP or Write.Ind
for PROFINET IO)

MODE=1 or
(MODE=2 and
FSLOT=
ProcessData.Wr
ite.Ind.SlotNum
ber)

ENO := 1
NEW := 1
SLOT, SUBSLOT,
INDEX, LEN :=
 New data
RECORD := New record
STATUS := ---

T8 S3 S8

Unack_ind
(Unacknowledged indication
from DP-master (Class 1) or
(Class 2))

MODE=4 ENO := 1
NEW := 0
SLOT, SUBSLOT,
INDEX, LEN := ---
RECORD := ---
STATUS := ---

T9 S5

ENO := 0

S7

Immediate
NEW := ---
SLOT, SUBSLOT,
INDEX, LEN := ---
RECORD := ---
STATUS := 0

T10 S7 S2

Immediate ENO := 1
NEW := 0
SLOT, SUBSLOT,
INDEX, LEN := 0
RECORD := ---
STATUS := ---

© Copyright PNO 2005 - All Rights Reserved Page 85 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T11 S8 S2

Immediate ENO := 1
NEW := 0
SLOT, SUBSLOT,
INDEX, LEN := 0
RECORD := ---
STATUS := ---

S2

Immediate ENO := 1

SLOT, SUBSLOT,
INDEX, LEN := 0
RECORD := ---
STATUS := ---

T13 S3, S4, S5,
S6, S7, S9 S9

Error
(Communikation error
detected)

STATUS := New status

 ENO := 0
NEW := 0
SLOT, SUBSLOT,
INDEX, LEN := ---
RECORD := ---

--- indicates “unchanged” FB outputs

T12 S9

NEW := 0

5.3.3 Provide Process Data Record (PRVREC)

The communication function Provide Process Data Record for a Field Device uses the PRVREC
function block shown in figure below.

One instance of a PRVREC function block provides one instance of the PLC function Provide
Process Data Record.

The function is invoked by EN=1. The MODE input controls the functionality of the PRVREC
function block.

MODE Meaning

0 Check for request:
If the Field Device interface has received a request to provide a process data record, only
the outputs NEW, SLOT, INDEX and RLEN are set. Multiple calls of this function block with
MODE=0 returns the outputs for the same request.

1 Receive all requests:
If the Field Device interface has received a request, the function block outputs are updated.

2 Receive requests for one slot or subslot:
If the Field Device interface has received a request for the slot and subslot the numbers of
which are given in F_ID input, the function block outputs are updated.

3 Positive response:
After checking or receiving the request to provide a process data record, this function block
provides the requested process data record with its RECORD parameter and sends a posi-
tive response to the Host Controller.

4 Negative response:
After checking or receiving the request to provide a process data record, this function block
refuses to provide this record and sends a negative response to the Host Controller. The
error reason is given with the inputs CODE1 and CODE2.

NOTE 1 This function blocks contains the methods to check, receive and respond a request for a proc-
ess data record. All aspects of providing a process data record may use one function block instance,
the different methods are distinguished using the MODE input.

The MLEN parameter specifies the count of bytes which shall be provided as a maximum. The
byte array given as RECORD parameter shall be at least of MLEN byte.

© Copyright PNO 2005 - All Rights Reserved Page 86 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

NOTE 2 An array declaration with zero elements is not supported in IEC 61131-3, therefor the mini-
mum length shall be 1 byte even if the record length is zero. The actual length is given with the LEN
parameter.

If a data record is received (with MODE=1 or MODE=2), the NEW output indicates that the data
record is stored in the variable given at the RECORD parameter. The variable passed to the
RECORD parameter shall be of appropriate size to contain the process data record. The LEN
output contains the length of the data record in byte.

If the function block refuses to accept the data record, the CODE1 input sets the Error Code1,
and the CODE2 input sets the Error Code 2 of the negative response.

If an error occurred, the ENO=0 indicates an error and the STATUS output contains the error
code. The STATUS values are defined in table 3.

PRVREC

BOOL --- EN ENO --- BOOL
INT --- MODE NEW --- BOOL

DWORD --- F_ID STATUS --- DWORD
BYTE --- CODE1 SLOT --- INT

CODE2 SUBSLOT --- INT
INT --- LEN INDEX --- INT

 RLEN --- INT
ANY --- RECORD-- --RECORD

 FUNCTION_BLOCK PRVREC (* Provide process data record *)
 VAR_INPUT
 EN : BOOL; (* Enable *)
 MODE : INT; (* Function specifier *)
 F_ID : DWORD; (* Slot / subslot to filter the requests *)
 (* to provide process data records *)
 CODE1 : BYTE; (* Reason for negative response *)
 CODE2 : BYTE; (* Reason for negative response *)
 LEN : INT; (* Length of a data record to provide *)
 END_VAR

 VAR_OUTPUT
 ENO : BOOL; (* Function enabled *)
 NEW : BOOL; (* New data record requested *)
 STATUS : DWORD; (* Field Device interface status *)
 SLOT : INT; (* Slot the record is requested for *)
 SUBSLOT : INT; (* Subslot the record is requested for *)
 INDEX : INT; (* Index of the requested process data record *)
 RLEN : INT; (* Length of the requested data record *)
 END_VAR

 VAR_IN_OUT
 RECORD : ANY; (* Provided data record *)
 END_VAR

BYTE ---

© Copyright PNO 2005 - All Rights Reserved Page 87 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Example 1: Provide a process data record

VAR P1: ARRAY [1..240] OF BYTE;
 L1: INT;
 PREC1: PRVREC;

PREC1 (MODE:=1);

2: INT;
 PREC2: PRVREC;

IF NEW=1 THEN
 (* provide record, the slot number is in PREC1.SLOT,
 the index is in PREC1.INDEX, store the record in P1
 and its length in L1 *)
 PREC1 (MODE:=3, LEN:=L1; RECORD:=P1);
..

Example 2: Check the received requests, process and acknowledge conditionally

VAR P2: ARRAY [1..240] OF BYTE;
 L

PREC2 (MODE:=0); (* check for a new request *)
IF NEW=1 THEN (* new request for a process data record available *)
 IF PREC2.SLOT=12 and PREC2.INDEX=1 THEN
 (* build record for slot 12 and index 1 and store in P2 *)
 PREC2 (MODE:=3, RECORD:=P2); (* provide this record *)

 ELSEIF PREC2.SLOT=13 and PREC2.INDEX=2 THEN
 (* build record for slot 13 and index 2 and store in P2 *)
 PREC2 (MODE:=3, RECORD:=R2); (* get this record *)
 :
 ELSE PREC2 (MODE:=4); (* give negative response *)
 END_IF;

Figure 49 – PRVREC function block

NOTE The EN and ENO parameters are optional and may be omitted when calling an instance of the func-
tion block in textual languages.

The following state diagram describes the algorithm of the PRVREC function blocks. The follow-
ing tables describe the transitions of this state diagram and the actions to be performed within
the states and the settings of the PRVREC function block outputs.

© Copyright PNO 2005 - All Rights Reserved Page 88 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

S1
INIT

S7
POS_RESP

S9
ERROR

S2 IDLE S4NEG_RESP

S3
ENABLED

S5 RECEIVED

S6
CHECK

T1

A

S8NEG_RESP

T2
Invocation [EN=1]

T3 Indication

T7 Indication [MODE=1 || (MODE=2 && FSLOT=ProcessData.Read.Ind.SlotNumber)]

T5 Unresp [MODE=0]

T8
Unresp [MODE=4]

T4 Immediate

T6 Immediate

T13 Error

T11 Immediate T12 Immediate

T9 Unresp [MODE=3]

T10 Immediate

Figure 50 – State diagram of PRVREC function block

The ERROR state may be entered by the states ENABLED, CHECK, RECEIVED, POS_RESP or
NEG_RESP if a communication error is detected.

The following table defines the transitions and actions given in the state diagram above.

Table 30 - Transitions and actions for PRVREC state diagram

STATE NAME STATE DESCRIPTION

cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 ENABLE No actions

 NEG_RESP

Negative response to DP-Master:
ProcessData.Read.rsp(-) with
Error Decode= 16#80
Error Code 1=CODE1

S5 RECEIVED Deposit data in parameter SLOT, INDEX, and RLEN
S6 CHECK No actions

S7 POS_ACK

Positive response to DP-Master:
ProcessData.Read.rsp(+) with
Length= LEN
Data= RECORD
Update status

S1 INIT

S4 / S8

Error Code 2= CODE2

S8 ERROR

© Copyright PNO 2005 - All Rights Reserved Page 89 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

NEW := 0

T2 S2 S3

Invocation

SLOT, SUBSLOT, INDEX,
RLEN := ---

(Next invocation)
EN=1 ENO := 1

NEW := ---

STATUS := ---
Indication
(Indication from Host
Controller or Supervisor:
ProcessData.Read.Ind
for PROFIBUS DP or
Read.Ind for PROFINET
IO)

S2

Immediate ENO := 1
NEW := ---

STATUS := ---

T5 S3 S6

Unresp MODE=0 ENO
(Unresponded indication
from Host Controller or
Supervisor:
ProcessData.Read.Ind
for PROFIBUS DP or
Read.Ind for PROFINET
IO)

:= 1
NEW := 1
SLOT, INDEX, RLEN :=
 New data
STATUS := ---

T6 S6 S2

Immediate

SLOT, SUBSLOT, INDEX,
RLEN := ---

ENO := 1
NEW := ---

STATUS := ---

T7 S3 ProcessData.Read.Ind
for PROFIBUS DP or
Read.Ind for PROFINET
IO)

1

S5

Indication
(Indication from Host
Controller or Supervisor:

MODE=1 or
(MODE=2 and
FSLOT=
ProcessData.Re
ad.Ind.SlotNum
ber)

NEW :=

ENO := 1

SLOT, SUBSLOT, INDEX,
RLEN := New data
STATUS := ---

S8

Unresp
(Unresponded indication
from Host Controller or
Supervisor:
ProcessData.Read.Ind
for PROFIBUS DP or
Read.Ind for PROFINET
IO)

:= 1
NEW := 0
SLOT, SUBSLOT, INDEX,
RLEN := ---

T9 S5 S7

STATUS := ---

Unresp
(Unresponded indication
from Host Controller or
Supervisor:
ProcessData.Read.Ind
for PROFIBUS DP or
Read.Ind for PROFINET
IO)

MODE=3 ENO := 1
NEW := ---
SLOT, SUBSLOT, INDEX,
RLEN := ---
RECORD := ---

T10 S7 S2

Immediate

SLOT, SUBSLOT, INDEX,
LEN := 0

ENO := 1
NEW := 0

STATUS := ---

T1 S1 S2

Initialisation
done

ENO := 0

SLOT, SUBSLOT, INDEX,
RLEN := System null
STATUS := ---

T3 S2 S4

 ENO := 1
NEW := 0
SLOT, SUBSLOT, INDEX,
RLEN := ---
STATUS := ---

T4 S4 SLOT, SUBSLOT, INDEX,
RLEN := ---

T8 S3

MODE=4 ENO

STATUS := ---

© Copyright PNO 2005 - All Rights Reserved Page 90 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T11 S8 S2

Immediate
NEW := 0

 ENO := 1

SLOT, SUBSLOT, INDEX,
RLEN := 0
STATUS := ---

T12 S9 S2

ENO := 1 Immediate
NEW := 0
SLOT, SUBSLOT, INDEX,
RLEN := 0
STATUS := ---

T13 S3, S4, S5,
S6, S7, S9

ENO := 0

S9

Error
NEW := 0
SLOT, SUBSLOT, INDEX,
RLEN := ---
STATUS := New status

--- indicates “unchanged” FB outputs

5.4 Alarm Handling and Diagnosis
A Field Device can generate alarms to its associated Host Controller to inform it e.g. about cer-
tain process events or other events to state the some limitations of the capabilities of the Field
Device for diagnostic reasons.

The Field Device shall inform its Host Controller when it is in a state which prevents it to perform
the intended process control function. A Supervisor shall be able to read this information. The
PLC application program of the Field Device shall provide adequate diagnosis information when
it recognises such a state.

5.4.1 Send Alarm (SALRM)

The communication function Send Alarm for a Field Device uses the SALRM function block de-
fined in this clause. One instance of a SALRM function block provides one instance of the PLC
function Send Alarm. The function is invoked when the REQ input is equal to 1.

The ID parameter identifies the slot of the Field Device the alarm is generated for. The ATYPE
input shall contain the alarm type. The ASPEC input shall contain the alarm specifier. The LEN
input contains the length in byte of the additional alarm information stored in the AINFO parame-
ter.

The Variable given as AINFO parameter shall be at least of LEN byte.

If the alarm is transmitted successfully, the VALID output indicates that the alarm was received
by the Host Controller.

able 2
If an error occurred, the ERROR output indicates an error and the STATUS output contains the
error code. The STATUS values are defined in T .

© Copyright PNO 2005 - All Rights Reserved Page 91 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

BOOL --- REQ DONE --- BOOL
DWORD --- ID BUSY --- BOOL

--- BOOL
INT ---

LEN
ANY --- AINFO--- ---AINFO

 FUNCTION_BLOCK SALRM (* Generate alarm *)
 VAR_INPUT
 REQ : BOOL; (* Request *)
 ID : INT; (* Handle of the slot of the alarm source *)
 ATYPE : INT; (* Type of the alarm *)
 ASPEC : INT; (* Specifier of the alarm *)
 LEN : INT; (* Length to be read *)
 END_VAR

 VAR_OUTPUT
 DONE : BOOL; (* Function done *)
 ERROR : BOOL; (* Error detected *)
 BUSY : BOOL; (* FB is busy *)
 STATUS : DWORD; (* Last detected status *)
END_ VAR

 VAR_IN_OUT

 AINFO : ANY (* Additional alarm information *)
 END_VAR

Timing Diagram:

Invocation

BUSY

REQ

DONE

ERROR

1 2 3

Case 1:
 The REQ input remains 1 until the function block invocation has completed, it is reset by the user
 when DONE gets 1.
Case 2:
 The user pulses the REQ input only for one invocation. The request is not aborted.
Case 3:
 Like case 1, but an error occurred.

SALRM

INT --- ATYPE ERROR
ASPEC STATUS --- DWORD

INT ---

Figure 51 – SALRM function block

© Copyright PNO 2005 - All Rights Reserved Page 92 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

The following state diagram describes the algorithm of the SALRM function block.

S1
INIT

S4
HAVE_ACK

S5
ERROR

S2
IDLE

T1

S3 WAITING

T2 Invocation [REQ=1]

T4 Neg_response

T6 Invocation

T3 Pos_response

T5 Invocation

Figure 5 – State diagram of SALRM function block 2

STATE NAME

The following table defines the transitions and actions given in the state diagram above.

Table 31 - Transitions and actions for SALRM state diagram

STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 WAITING

Evaluate FB inputs.
Request alarm notification:
AlarmNotification.Req with
AREP= ...
Slot number= SLOT
Alarm Type= ATYPE
Seq Nr= increment last Seq Nr specific to the DP-slave
Alarm Specifier= ASPEC
Add Ack= false
Alarm Data= AINFO

S4 HAVE_ ACK No actions
S5 ERROR indicate error

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2

Initialisation done DONE := 0
BUSY := 0
ERROR := 0
STATUS := 0

T2 S2 S3

Invocation
(Next invocation)

REQ=1 DONE := 0
BUSY := 1
ERROR := 0
STATUS := -1 (is
busy)

© Copyright PNO 2005 - All Rights Reserved Page 93 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

T3 S3 S4

Pos_response
(Positive response from
remote communication
partner:
AlarmNotification.Cnf(+))

 DONE := 1
BUSY := 0
ERROR := 0
STATUS := 0

T4 S3 S5

Neg_response
(Negative response from
remote communication
partner or other
communication problems
detected:
AlarmNotification.Cnf(-) or
Abort.Ind or local problems)

 DONE := 0
BUSY := 0
ERROR := 1
STATUS := New error
 code

T5 S4 S2

Invocation
(Next invocation of this
instance)

 DONE := ---
BUSY := ---
ERROR := ---
STATUS := ---

T6 S5 S2

Invocation
(Next invocation of this
instance)

 DONE := ---
BUSY := ---
ERROR := ---
STATUS := ---

--- indicates “unchanged” FB outputs

5.4.2 Generate Diagnosis Information (SDIAG)

This function is provided only for PROFIBUS DP because the service used for the function block
is not provided by PROFINET IO. Diagnosis is realized using the alarm services and data re-
cords.

The communication function Generate Diagnosis Information for a DP-slave uses the SDIAG
function block defined in this clause. One instance of a SDIAG function block provides one in-
stance of the PLC function Generate Diagnosis Information. The function is invoked when the
REQ input is equal to 1.

The ED_FLAG input provides the ext_diag_flag information, the ED_OV provides the
ext_diag_overflow information. The LEN input contains the length in byte of the additional diag-
nosis information stored in the ED_DATA parameter. The Variable given as ED_DATA parameter
shall be at least of LEN byte. Possible value range of the LEN input is 0 .. 59.

If an error occurred, the ERROR output indicates an error and the STATUS output contains the
error code. The STATUS values are defined in table 3.

© Copyright PNO 2005 - All Rights Reserved Page 94 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

BOOL --- REQ ERROR --- BOOL
BOOL --- ED_FLAG STATUS --- DWORD
BOOL --- ED_OV
INT --- LEN
ANY --- ED_DATA-- --ED_DATA

 FUNCTION_BLOCK SDIAG (* Set diagnosis information *)
 VAR_INPUT
 REQ : BOOL; (* Request *)
 ED_FLAG : BOOL; (* ext_diag_flag *)
 ED_OV : BOOL; (* ext_diag_overflow *)
 LEN : INT; (* Length of the data in ED_DATA *)
 END_VAR

 VAR_OUTPUT
 ERROR : BOOL; (* Error detected *)
 STATUS : DWORD; (* Last detected status *)
END_ VAR

 VAR_IN_OUT

 ED_DATA : ANY (* Additional diagnosis information *)
 END_VAR

SDIAG

Figure 53 – SDIAG function block

The following state diagram describes the algorithm of the SDIAG function block.

S1
INIT

S4
HAVE_ACK

S5
ERROR

S2
IDLE

T1

S3 WAITING

T2 Invocation [REQ=1]

T4 Error

T6 Invocation

T3 Response

T5 Invocation

Figure 5 – State diagram of SDIAG function block 4

The following table defines the transitions and actions given in the state diagram above.

Table 32 - Transitions and actions for SDIAG state diagram

STATE NAME STATE DESCRIPTION

S1 INIT
cold start state,
initialise outputs

S2 IDLE
idle state,
No actions

S3 WAITING Evaluate FB inputs.

© Copyright PNO 2005 - All Rights Reserved Page 95 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Set diagnosis information:
SetSlaveDiag.Req with
AREP= ...
Ext_Diag_Flag= ED_FLAG

Ext_Diag_Data= ED_DATA

Ext_Diag_Overflow= ED_OV
Length of Ext_Diag_Data= LEN

S4 HAVE_ ACK No actions
S5 ERROR indicate error

TRAN-
SITION

SOURCE
STATE

TARGET
STATE EVENT CONDITION ACTION

T1 S1 S2
Initialisation done ERROR := 0

STATUS := 0

S3
Invocation
(Next invocation)

REQ=1 ERROR := 0
STATUS := ---

T3 S3 S4

Response
(Response from remote
communication partner:
SetSlaveDiag.Cnf)

 ERROR := 0
STATUS := 0

T4 S3 S5

Error
(Communication problems
detected:
Abort.Ind or local problems)

 ERROR := 1
STATUS := New error
 code

T5 S4 S2
Invocation
(Next invocation of this
instance)

 ERROR := ---
STATUS := ---

S2
Invocation
(Next invocation of this
instance)

STATUS := ---

--- indicates “unchanged” FB outputs

T2 S2

T6 S5
ERROR := ---

© Copyright PNO 2005 - All Rights Reserved Page 96 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

6 PLC in Multiple Communication Roles

A real PLC may implement multiple communication roles i.e. it may act as a Host Controller, a
Supervisor, and a Field Device at the same time.

Real PLC
in various communication roles
programmed in IEC 61131-3

PLC
as Supervisor

Remote I/O
as Field Device

Field Device

PLC
as Host Controller

PLC
as a Field Device

Figure 55 – PLC in multiple communication roles

All Communication Function Blocks defined in the previous clauses may be used in the appli-
cation program of this PLC.
This allows to use e.g. a technological function block which was implemented to run on a
Field Device also on a PLC which acts additionally as a Host Controller.

© Copyright PNO 2005 - All Rights Reserved Page 97 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

7 Guidelines for application of Communication Function Blocks

7.1 Communication Function Blocks and Proxy Function Blocks

1. In a Host Controller the Communication FB can be used in application programs to communi-
cate directly with Field Device. This use is mainly offered to experts which are familiar with
the communication specific functionality.

2. The Communication FB can also applied inside a so-called Proxy FB to achieve for its user a
"hidden" communication with the Field Device. The Proxy FB can represent the technological
functionality of the Field Device completely or partly. In this case an expert for the communi-
cation and for the specific Field Device functionality provides a predefined standardised in-
terface to the Field Device to the user of the Proxy FB.

This clause provides some tutorial information for the user of the Communication Function
Blocks defined in the previous clauses. The Communication Function Blocks can be used in two
levels of PLC applications written in IEC 61131-3 programming languages as shown in the fol-
lowing figure:

DP_RDREC

DP_WRREC

FB_Field Device Control

Proxy FB
Tecxhnology FB

Communication
FB

inside a Proxy FB

PLC : Host controller
IEC 61131-3 Program :

DP_RDREC

Comm FB
directly

d

Figure 56 – Usage of Communication FB and Proxy FB in the PLC program (Host Control-
ler)

7.2 Communication Function Blocks and PROFINET CBA
The user is able to create a PROFINET CBA component out of a technology function block (also
called proxy function block) or a user written application program (or part of it), which uses the
above defined communication function blocks. Thus he will be able to use the PROFINET CBA
component from the context of other PROFINET CBA devices.

The term “proxy” is also used in the context of PROFINET CBA as transparent communication
link, thus the meaning is quite different from the meaning defined within this specification

7.3 Mapping Technological Functionality to Proxy FB

1. In the typical usage one single function block instance represents the device or the logical
object in the application program. This is called here a Proxy FB.

In this usage the invocation (call) of the FB passes all FB inputs via the actual parameters

There are two main concepts for mapping technological functionality to Proxy FB as illustrated in
the following figure:

© Copyright PNO 2005 - All Rights Reserved Page 98 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

into the function block instance. This kind of FB has only one "method", which is performed
by the single FB algorithm dependant on the history of the last FB invocation and the new
actual parameter set.
However various input data can cause different behaviour of the function block. For example
one input can determine a specific "mode" or "method" of the FB execution. In the following
figure the so-called Proxy FB illustrates this usage.

2. In another usage a set of different function block types and instances represent the various
"methods" applied to one device or logical object.
This device or object needs not to be represented by a user accessible FB but may be a
virtual object managing the internal device data, e.g. a separate instance or a common data
structure. Each invocation of these various "method"-FB may have their specific set of
parameters and may causes a different method on the device. Each of these invocations
references the object representing the device for co-ordination and synchronisation. In the
following figure the function blocks Methods1_FB, Methods2_ illustrate this usage.

Local instance
data

Proxy FB
DevID
METHOD
data_m1 result_m1
data_m2 result_m2

Method1_FB
Ref_Obj ______ Ref_Obj
data_m1 result_m1

Method2_FB
Ref_Obj ______ Ref_Obj
data_m2 result_m2

a) One Proxy FB
represents a field device

b) A set of Method FB
represent a field device

Common instance
data object

Application program

Figure 57 – Concepts of FB application
a) One function block as proxy b) Set of function blocks as methods

7.4 Using Device IO

7.4.1 Integrated and External Device IO

The following example of a minimal PID controller (MiniPID Field Device) illustrates the two pos-
sible attachments of IO to a Field Device. The PID controller receives cyclically the set point SP
value via the Field Device interface from the Host Controller and calculates the OUT value de-
pending on the actual process value PV. The process data OUT and PV are locally attached the
Field Device and presented to the interface of the Field Device.

The parameters PAR of the PID controller can be set and modified via a process data record as
a data structure PAR. The current version of the parameters is for example contained in the data
record PAR as byte 0..1 and is managed only in the host.

© Copyright PNO 2005 - All Rights Reserved Page 99 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Algorithms

PV

OUT PV

OUT SP PAR

DP Interface to the PLC (host controller)

Process interface

Mini-PID
Field Device

Process

Figure 5 – Field Device with local IO 8

Another possible application is shown in the following figure. The Mini-PID Field Device puts and
gets the process data PV and OUT by other Field Devices AI and AO via the PLC (Host
Controller). In this case the following interface structure is applied.

Algorithms

PV OUT SP PAR

Interface to the PLC (host controller)

Analog Input

Process interface

Analog Output

Process interface

PV OUT

PV

OUT

Mini-PID
Field Device AI AO

Process Process

9Figure 5 – Field Device with external IO

7.4.2 Proxy FB for a Device with Local IO

For the Field Device above shown with the local IO a simplified Proxy FB usable in the PLC
(Host Controller) program is given in the next figure. The parameter ID identifies the Field
Device, SP and PAR are input parameters for the PID, PV and OUT output the actual process
values to the PLC program. REQ_PAR and VPAR serve for the actualisation of the data record
PAR. Details are shown in the example program below in ST language

MINI_PID

ID PV

SP OUT

REQ_PAR VPAR

PAR

DWORD

REAL

BOOL

STRUCT

REAL

REAL

WORD

Figure 6 – Proxy FB MINI_PID with local IO 0

For each PID Field Device a Proxy FB MINI-PID is instanciated and the corresponding parameter
ID is given to identify the device.

© Copyright PNO 2005 - All Rights Reserved Page 100 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

REQ_PAR=1 initiates the parameterisation, i.e. the data of PAR are sent to the device as data
record 1. In VPAR the acknowledgement of the successful parameterisation is given as a version
number in the VPAR variable.

The example program below shows the algorithm of the Proxy FB in IEC 61131 language
Structured Text (ST).

FUNCTION_BLOCK MINI_PID;
VAR_IN
 ID: DWORD;
 SP: REAL;
 REQ_PAR: BOOL;
 PAR: STRUCT;
 VPAR: WORD;
 PARS: ARRAY [1..20] OF BYTE;
 END_STRUCT;
END_VAR;
VAR_OUT;
 PV, OUT: REAL;
 VPAR: WORD;
 END_VAR;
VAR
 OLD_REQ: BOOL;
 INS: STRUCT;
 PV, OUT: REAL;
 VPAR:WORD;
 END_STRUCT;
 RD_INS: GETIO;(* Instance for reading the input data of Field Device *)
 WR_OUTS:SETIO;(* Instance for writing the output data of Field Device *)
 WRPAR: WRREC;(* Instance for writing parameters of Field Device *)
END_VAR;

BEGIN
RD_INS(ID:= ID);
INS := RD_INS.INPUTS; (* transfers an array of bytes to a structure *)
WRPAR(REQ:= REQ_PAR; ID:= ID; MLEN:= 20; RECORD:= PAR.PARS);

IF WRPAR.DONE THEN (* parameterisation successfully finished *)
 VPAR:= PAR.VPAR;
 :
 END_IF;
IF WRPAR.ERROR THEN (*parameterisation failed *)
 :
 END_IF;
WR_OUTS(ID:= ID; OUTPUTS:= SP; LEN := 10);
END;

Alternatively the algorithm shown in the following figure may be used to parameterise the Field
Device. This algorithm uses the BUSY output to avoid to call the WRPAR instance and to poll the
result of the parameterisation.

IF (REQ = true) AND (OLD_REQ = false)
THEN IF NOT WRPAR.BUSY
 THEN (* first call *)
 WRPAR(REQ:= true; ID:= ID; LEN:= 20; RECORD:= PAR.PARS);
 ELSE
 : (* error handler: REQ_PAR on busy parameterisation *)
 END_IF;
END_IF;
IF WRPAR.BUSY THEN WRPAR (); (* next invocations with the same parameters *)
END_IF;
IF WRPAR.DONE THEN (*parameterisation successfully finished *)
 VPAR:= PAR.VPAR;
 :
 END_IF;
IF WRPAR.ERROR THEN (*parameterisation failed *)
 :

© Copyright PNO 2005 - All Rights Reserved Page 101 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

 END_IF;
OLD_REQ:= REQ;

7.4.3 Proxy FB for a Field Device with IO via the Process Image

If the cyclic data from and to the Field Device is mapped via the process image the actual
process variable PV is used as an input of the Proxy FB. The setpoint OUT has to be written in
the process output image.

The output BUSY of the WRREC can be used for reducing the invocations and to achieve a
simple error handling upon REQ_PAR=1 during running parameterising.

MINI_PID_2

ID OUT

SP VPAR

PV

REQ_PAR

PAR

DWORD

REAL

BOOL

STRUCT

REAL

WORD

REAL

Figure 6 – Proxy FB MINI_PID_2 with IO via the process image 1

In this case the FB input SP and the FB output OUT have to be the corresponding addresses in
the process image.

Using this FB the inputs and /or outputs of the PID functionality may be integrated into a PID
Field Device or the PID functionnality may get its input and outputs from an other Field Device.

© Copyright PNO 2005 - All Rights Reserved Page 102 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

The example program below shows the algorithm of the Proxy FB MINI_PID_2 in IEC 61131
language Structured Text (ST).

FUNCTION_BLOCK MINI_PID_2;
VAR_IN
 ID: DWORD;
 SP, PV: REAL;
 REQ_PAR: BOOL;
 PAR: STRUCT;
 VPAR: WORD;
 PARS: ARRAY [1..20] OF BYTE;
 END_STRUCT;
END_VAR;
VAR_OUT;
 OUT: REAL;
 VPAR: WORD;
END_VAR;
VAR
 OLD_REQ: BOOL;
 INS: STRUCT;
 PV, OUT: REAL;
 VPAR:WORD;
 END_STRUCT;
 OUTS: REAL;
 RD_INS: GETIO;
 WR_OUTS: SETIO;
 WRPAR: WRREC;
 :
END_VAR;

BEGIN
WRPAR(REQ:= REQ_PAR; ID:= ID; LEN:= 20; RECORD:= PAR.PARS);
 (* permanent invocations for updating of outputs *)
IF WRPAR.DONE THEN VPAR:= PAR.VPAR;
 (* parameterisation successfully finished *)
 END_IF;
IF WRPAR.ERROR THEN ...(* parameterisation failed *)
END_IF;
END

The usage of the BUSY output is useful for the application of the asynchronuously executed
function blocks.

Comparing Proxy FB using an integrated IO interface or using IO via process image shows some
differences:

• The interface of the Proxy FB represents the complete Field Device interface of its
technological functionality.

• The Field Device can be represented by one Proxy FB.

• The Field Device is identified only by one parameter ID.

Proxy FB with IO via process image (e.g. FB MINI_PID_2):

• The same FB interface may be used with different configurations:

The IO are integrated in the Field Device the Proxy FB represents.

7.4.4 Some Recommendations

Proxy FB with integrated IO interface (e.g. FB MINI_PID):

© Copyright PNO 2005 - All Rights Reserved Page 103 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

The IO come from a different device.
The FB itself may contain the technological functionality or parts of it.

Accordíng IEC 61131-3 the function block instance can be

• invoked (called) in the body of another Program Organisation Unit (POU) like a program or a
function block which is in the next (higher) level of the hierarchy and/or

• scheduled by an associated Task which is defined according IEC 61131-3 on a periodic basis
or upon the occurence of specified "events" and conditions.

In the figure below PROGRAM_1 is scheduled periodically with a task (100 ms cycle) and it
invokes the included function block instances M_2 like subroutines.

Otherwise if a function block instance is associated with a task it shall be under the exclusive
control of the task, independant of the rules of evaluation of the program organisation unit (FB or
program) in which the function block instance is declared.

• In the case of a Field Device with integrated IO the interface of this Field Device is splitted to
the Proxy FB and the process image.

7.5 Scheduling of Function Blocks

That means if a funktion block instance does not have an association to an IEC 61131-3 task the
execution of its algorithm is a part of the execution of the invoking POU.

M_2

PROGRAM_1

Task Cycle_1
(Interval := 100ms)

"cyclic"

M_2

PROGRAM_2

Task Cycle_1

Task
 Diagnosis

"event"

Figure 62 – Scheduling of a function block
 a) in a task scheduled program (cyclic) - b) by a direct task association (event)

Proxy Function Blocks representing a Field Device may need for performance reason like
response time to be scheduled in multiple tasks. Therefore the PLC Programming System and
the PLC Runtime System may support one of the following solutions:

• The graphical and/or textual representation of the same function block instance invoked in
multiple programs as illustrated in the figure below.
In this case the function block instance M_2 is scheduled as well as cyclically by the
invocation in PROGRAM_1 and event driven upon an occurrence of an diagnosis event in
PROGRAM_2.

© Copyright PNO 2005 - All Rights Reserved Page 104 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

M_2

PROGRAM_2

Task Diagnosis

M_2

PROGRAM_1

Task Cycle_1
(Interval := 100ms)

Param_1 Param_2

Figure 63 – Multiple scheduling of a FB instance by invokations in different programs

• The graphical and/or textual representation of multiple invokations of the same function block
instance with different explicit task associations in the same program.
In this case the function block instance M_2 is scheduled as well as by a cyclic task and by a
diagnosis task.

M_2

PROGRAM_1

Param_1

M_2

Task
 Diagnosis

Task
 Cycle

Param_2

Figure 64 – Multiple scheduling of a FB instance by different invokations in the same
programs

Some provision may be necessary for both concepts of multiple scheduling of function blocks:

• Specific invokation parameters can be used for the distinction which task has actually
scheduled the function block; i.e. the indication of the actual invokation by a specific
parameter can be used from inside the function block to apply the suitable "method".

• Since the multiple scheduling may cause an interrupt of the current function block execution
the so-called reentrant programming technique provides the necessary data consistency; i.e.
the concurrent access to common instance data has to be mutually exclusive using e.g.
semaphores.

© Copyright PNO 2005 - All Rights Reserved Page 105 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

Annex A - Compliance Table

The following table lists all communication functions and Communication Function Blocks defined
in this specification.
A manufacturer which claim to be compliant with this PNO specification shall provide a list in the
format of this table and shall identify all compliant communication functions and function blocks.

Table A.1 - Compliance table
No Communication

function blocs
and function

Explanation Implementation
specific

additional
information

Compliant
(Y/N)

for DP

Com-
pliant

(Y/N) for
PN IO

Address Functions
1 ID Function for conversion of a physical address to the

handle
 n.a.

2 ADDR Function for conversion of a handle to the physical ad-
dress

 n.a.

3 SLOT Function for addressing a slot of a DP-slave n.a.
4 ADDR_TO_ID Function for conversion of a physical address to the

handle

9 SETIO_PART Set IO data object Related to a Part of a Slot
10 RDREC Read Process Data Record
11 WRREC Write Process Data Record
12 RALRM Receive Alarm
13 RDIAG Read Diagnosis n.a.
14 ICTRL "Interlocked Control"

Communication Function Blocks Supervisor
15 RDIN Read input data
16 RDOUT Read output data
17 RDREC Read process data record from a slot

WRREC Write process data record to a slot
RDIAG Read diagnosis information n.a.
CNCT Manage a connection

Communication Function Blocks for Field Device
21 RCVCO Receives output data
22 SBCCI Subscribe input data
23 PRVCI Provide (publish) input data

RCVREC Receive process data record
25 PRVREC Receive request and provides a process data record
26 SALRM Request to send an alarm
27 SDIAG Request to send diagnosis n.a.

Communication Function Blocks for Host Controller Serving Field Device Applications
28 RCVCO Receive output data
29 PRVCI Provide (publish) input data
30 RCVREC Receive process data record
31 PRVREC Receive request and provides a process data record

5 ID_TO_ADDR Function for conversion of a handle to the physical ad-
dress

Communication Function Blocks Host Controller

6 GETIO Get IO data object
7 SETIO Set IO data object
8 GETIO_PART Get a Part of IO data object

18
19
20

24

© Copyright PNO 2005 - All Rights Reserved Page 106 of 108

Communication Function Blocks on PROFIBUS DP and PROFINET IO Version 2.0

In the following tables the permitted "Implementation dependant features" shall be listed.

Table A.2 - Implementation dependant features

Clause Feature Implementation chosen
2.7 Use and meaning of Error_Code_2
2.7 Use and meaning of implementer-specific values in Error_Code_1
3.2 Use of variables of the %I area at the INPUTS parameter of FB GETIO
3.2 Use of variables of the %I area at the INPUTS parameter of FB

GETIO_PART

3.4 Content of the task information TINFO

Table A.3 - Implementation dependant features for PROFIBUS DP

Clause Feature Implementation chosen
3.2 Maximum length of IO data object of one DP-slave supported by a DP-

master (Class 1)

3.2 Maximum length of IO data object of one slot of a DP-slave supported
by a DP-master (Class 1)

3.2 Maximum length of consistent IO data object of one slot of a DP-slave
supported by a DP-master (Class 1)

4.2 Maximum length of IO data object of one DP-slave supported by a DP-
master (Class 2)

4.2 Maximum length of IO data object of one slot of a DP-slave supported
by a DP-master (Class 2)

4.2 Maximum length of consistent IO data object of one slot of a DP-slave
supported by a DP-master (Class 2)

Table A.4 - Implementation dependant features for PROFINET IO

Clause Feature Implementation chosen
3.2 Maximum length of IO data object of one IO Device supported by an IO

Controller

3.2 Maximum length of IO data object of one subslot of an IO Device sup-
ported by an IO Controller

3.2 Maximum length of consistent IO data object of one slot of an IO De-
vice supported by an IO Controller

4.2 Maximum length of IO data object of one IO Device supported by a
Supervisor

4.2 Maximum length of IO data object of one slot of a IO Device supported
by a Supervisor

4.2 Maximum length of consistent IO data object of one slot of a IO Device
supported by a Supervisor

© Copyright PNO 2005 - All Rights Reserved Page 107 of 108

 Copyright by:

PROFIBUS Nutzerorganisation e.V.
Haid-und-Neu-Str. 7
76131 Karlsruhe
Germany
Phone: +49 (0) 721 / 96 58 590
Fax: +49 (0) 721 / 96 58 589
info@profibus.com
www.profibus.com

	General
	Principles for modelling Communication Function Blocks
	
	General
	DP Address Concept
	Function ID
	Function ADDR
	Function SLOT

	Address Conversion
	Function Block ADDR_TO_ID
	Function Block ID_TO_ADDR

	Communication Function Blocks for Host Controller
	
	General
	Get IO data object (GETIO)
	Set IO data object (SETIO)
	Get a Part of IO data object (GETIO_PART)
	Set IO data object Related to a Part of a Slot (SETIO_PART)
	General
	Read Process Data Record (RDREC)
	Write Data Record (WRREC)
	General
	Receiving Alarms (RALRM)
	Read Diagnosis (RDIAG)
	Interlocked Control (ICTRL)

	Communication Function Blocks for Supervisor
	
	Read Input Data (RDIN)
	Read Output Data (RDOUT)
	Read Diagnosis (RDIAG)

	Communication Function Blocks for Field Devices
	
	General
	Receive Cyclic Output Data (RCVCO)
	Subscribe Cyclic Input Data (SBCCI)
	Provide Cyclic Input Data (PRVCI)
	General
	Receive Process Data Record (RCVREC)
	Provide Process Data Record (PRVREC)
	Send Alarm (SALRM)
	Generate Diagnosis Information (SDIAG)

	PLC in Multiple Communication Roles
	Guidelines for application of Communication Function Blocks
	
	Integrated and External Device IO
	Proxy FB for a Device with Local IO
	Proxy FB for a Field Device with IO via the Process Image
	Some Recommendations

	Annex A - Compliance Table

